Previous |  Up |  Next


Title: On asymptotic properties of solutions of third order linear differential equations with deviating arguments (English)
Author: Kiguradze, Ivan
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 30
Issue: 1
Year: 1994
Pages: 59-72
Summary lang: English
Category: math
Summary: The asymptotic properties of solutions of the equation $u^{\prime \prime \prime }(t)=p_1(t)u(\tau _1(t))+p_2(t)u^{\prime }(\tau _2(t))$, are investigated where $p_i:[a,+\infty [\rightarrow R \;\;\;\;(i=1,2)$ are locally summable functions, $\tau _i:[a,+\infty [\rightarrow R\;\;\;(i=1,2)$ measurable ones and $\tau _i(t)\ge t\;\;\;(i=1,2)$. In particular, it is proved that if $p_1(t)\le 0$, $p^2_2(t)\le \alpha (t)|p_1(t)|$, \[\int _a^{+\infty }[\tau _1(t)-t]^2p_1(t)dt<+\infty \;\;\;\text{and}\;\;\; \int _a^{+\infty }\alpha (t)dt<+\infty ,\] then each solution with the first derivative vanishing at infinity is of the Kneser type and a set of all such solutions forms a one-dimensional linear space. (English)
Keyword: differential equation with deviating arguments
Keyword: Kneser type solutions
Keyword: vanishing at infiniting solution
MSC: 34K15
MSC: 34K99
idZBL: Zbl 0806.34063
idMR: MR1282113
Date available: 2008-06-06T21:25:39Z
Last updated: 2012-05-10
Stable URL:
Reference: [1] C. Villari: Contributi allo studio asintotico dell’ equazione $x^{\prime \prime \prime }(t)+p(t)x(t)=0 $.Ann. Math. Pura ed Appl., 51(1960), 301-328. Zbl 0095.06903, MR 0121528
Reference: [2] I. T. Kiguradze and D. I. Chichua: On the Kneser problem for functional differential equations.(Russian) Differentsial’nie Uravneniya 27 (1991), No 11, 1879-1892. MR 1199212
Reference: [3] I .T. Kiguradze: On some properties of solutions of second order linear functional differential equations.Proc. of the Georgian Acad. of Sciences, Mathematics 1 (1993), No 5, 545-553. Zbl 0810.34067, MR 1288650


Files Size Format View
ArchMathRetro_030-1994-1_7.pdf 253.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo