Previous |  Up |  Next

Article

Title: Monotone retractions and depth of continua (English)
Author: Charatonik, J. J.
Author: Spyrou, P.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 30
Issue: 2
Year: 1994
Pages: 131-137
Summary lang: English
.
Category: math
.
Summary: It is shown that for every two countable ordinals $\alpha $ and $\beta $ with $\alpha > \beta $ there exist $\lambda $-dendroids $X$ and $Y$ whose depths are $\alpha $ and $\beta $ respectively, and a monotone retraction from $X$ onto $Y$. Moreover, the continua $X$ and $Y$ can be either both arclike or both fans. (English)
Keyword: arclike
Keyword: continuum
Keyword: decomposable
Keyword: dendroid
Keyword: depth
Keyword: end
Keyword: fan
Keyword: mapping
Keyword: monotone
Keyword: retraction
Keyword: unicoherent
MSC: 54C10
MSC: 54F15
idZBL: Zbl 0817.54011
idMR: MR1292564
.
Date available: 2008-06-06T21:26:02Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107501
.
Reference: [1] Bing, R. H.: Snake-like continua.Duke Math. J. 18 (1951), 653-663. Zbl 0043.16804, MR 0043450
Reference: [2] Bula, W. D., Oversteegen, L. G.: A characterization of smooth Cantor bouquets.Proc. Amer. Math. Soc. 108 (1990), 529-534. MR 0991691
Reference: [3] Charatonik, J. J., Spyrou, P.: Depth of dendroids.Math. Pannonica, 5/1 (1993), 113-119. MR 1279349
Reference: [4] Charatonik, W. J.: The Lelek fan is unique.Houston J. Math. 15 (1989), 27-34. Zbl 0675.54034, MR 1002079
Reference: [5] Cook, H.: Tree-likeness of dendroids and $\lambda $-dendroids.Fund. Math. 68 (1970), 19-22. MR 0261558
Reference: [6] Iliadis, S. D.: On classification of hereditarily decomposable continua.Moscow Univ. Math. Bull. 29 (1974), 94-99. Zbl 0304.54035, MR 0367944
Reference: [7] Jänich, K.: Topology.Springer Verlag, 1984. MR 0734483
Reference: [8] Lelek, A.: On plane dendroids and their end points in the classical sense.Fund. Math. 49 (1961), 301-319. Zbl 0099.17701, MR 0133806
Reference: [9] Mackowiak, T.: Continuous mappings on continua.Dissertationes Math. (Rozprawy Mat.) 157 (1979), 1-91. Zbl 0444.54021, MR 0522934
Reference: [10] Mohler, L.: The depth in tranches in $\lambda $-dendroids.Proc. Amer. Math. Soc 96 (1986), 715-720. MR 0826508
Reference: [11] Nadler, S. B., Jr.: Hyperspaces of sets.M. Dekker, 1978. Zbl 0432.54007, MR 0500811
Reference: [12] Rakowski, Z .M.: On decompositions of Hausdorff continua.Dissertationes Math. (Rozprawy Mat.) 170 (1980), 1-33. Zbl 0455.54006, MR 0575753
Reference: [13] Spyrou, P.: Finite decompositions and the depth of a continuum.Houston J. Math. 12 (1986), 587-599. Zbl 0713.54038, MR 0873653
.

Files

Files Size Format View
ArchMathRetro_030-1994-2_5.pdf 237.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo