Previous |  Up |  Next

Article

Title: Special solutions of linear difference equations with infinite delay (English)
Author: Medveď, Milan
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 30
Issue: 2
Year: 1994
Pages: 139-144
Summary lang: English
.
Category: math
.
Summary: For the difference equation $(\epsilon )\,\, x_{n+1} = Ax_n + \epsilon \sum _{k = -\infty }^n R_{n-k}x_k$,where $x_n \in Y,\, Y$  is a Banach space, $\epsilon $ is a parameter and  $A$  is a linear, bounded operator. A sufficient condition for the existence of a unique special solution  $y = \lbrace y_n\rbrace _{n=-\infty }^{\infty }$  passing through the point  $x_0 \in Y$  is proved. This special solution converges to the solution of the equation (0) as  $\epsilon \rightarrow 0$. (English)
Keyword: difference equation
Keyword: infinite delay
Keyword: special solution
MSC: 34K30
MSC: 39A10
MSC: 39A70
MSC: 47B39
idZBL: Zbl 0819.39001
idMR: MR1292565
.
Date available: 2008-06-06T21:26:06Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107502
.
Reference: [1] Medveď, M.: Two-sided solutions of linear integrodifferential equations of Volterra type with delay.Časopis pro pěst. matem. 115 , 3 (1990), 264–272. MR 1071057
Reference: [2] Ryabov, Yu. A.: On the existence of two-sided solutions of linear integrodifferential equations of Volterra type with delay.Čaopis pro pěst. matem. 111, 2 (1986), 26–33. (Russian) MR 0833154
.

Files

Files Size Format View
ArchMathRetro_030-1994-2_6.pdf 223.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo