Previous |  Up |  Next

Article

Title: Embedding of Hilbert manifolds with smooth boundary into semispaces of Hilbert spaces (English)
Author: Margalef-Roig, J.
Author: Outerelo-Domínguez, E.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 30
Issue: 3
Year: 1994
Pages: 145-164
Summary lang: English
.
Category: math
.
Summary: In this paper we prove the existence of a closed neat embedding of a Hausdorff paracompact Hilbert manifold with smooth boundary into $H \times [0, + \infty)$, where $H$ is a Hilbert space, such that the normal space in each point of a certain neighbourhood of the boundary is contained in $H \times \{ 0 \}$. Then, we give a neccesary and sufficient condition that a Hausdorff paracompact topological space could admit a differentiable structure of class $\infty$ with smooth boundary. (English)
Keyword: neat embedding
Keyword: Hilbert manifold
Keyword: manifold with smooth boundary
Keyword: normal bundle manifold
Keyword: collar neighbourhood
MSC: 57R40
MSC: 58B10
MSC: 58C25
idZBL: Zbl 0849.57026
idMR: MR1308351
.
Date available: 2008-06-06T21:26:17Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107504
.
Reference: [1] R. Abraham: Lectures of Smale Differential Topology.Columbia University, New York, 1962.
Reference: [2] S. Armas-Gómez J. Margalef-Roig E. Outerelo-Domínguez E. Padrón-Fernández: Embedding of an Urysohn differentiable manifold with corners in a real Banach space.Winter School of Geometry and Physics held in SRNI (January, 1991, Czechoslovak).
Reference: [3] H. Cartan: Sur les Rétractions d’une varieté.C.R. Acad. Sc. Paris, A. 303, Serie I, n. 14, 1986, p. 715. Zbl 0609.32021, MR 0870703
Reference: [4] J. Eells K.D. Elworthy: Open embeddings of certain Banach manifolds.Ann. of Math. 91, 1970, 465–485. MR 0263120
Reference: [5] R. Godement: Théorie des faisceaux.Hermann, Paris, 1958. Zbl 0080.16201, MR 0102797
Reference: [6] J. Margalef-Roig E. Outerelo-Domínguez: Topología diferencial.C.S.I.C., Madrid, 1988. MR 0939168
Reference: [7] J. Margalef-Roig E. Outerelo-Domínguez: On Retraction of Manifolds with corners.(to appear). MR 1303795
Reference: [8] J.H. McAlpin: Infinite dimensional manifolds and Morse theory.Ph.D. Thesis, Columbia University, New York, 1965.
Reference: [9] R.E. Stong: Notes on Cobordism Theory.Princeton University Press, 1968. Zbl 0181.26604, MR 0248858
.

Files

Files Size Format View
ArchMathRetro_030-1994-3_1.pdf 353.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo