Title:
|
Characterizing tolerance trivial finite algebras (English) |
Author:
|
Chajda, Ivan |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
30 |
Issue:
|
3 |
Year:
|
1994 |
Pages:
|
165-169 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
An algebra $A$ is tolerance trivial if $A̰= A$ where $A̰$ is the lattice of all tolerances on $A$. If $A$ contains a Mal’cev function compatible with each $T$ $A̰$, then $A$ is tolerance trivial. We investigate finite algebras satisfying also the converse statement. (English) |
Keyword:
|
tolerance relation |
Keyword:
|
finite algebra |
Keyword:
|
lattice |
Keyword:
|
tolerance trivial algebra |
Keyword:
|
Mal’cev function |
Keyword:
|
Pixley function |
Keyword:
|
arithmetical algebra |
MSC:
|
03E20 |
MSC:
|
08A30 |
MSC:
|
08A40 |
MSC:
|
08B05 |
idZBL:
|
Zbl 0816.08003 |
idMR:
|
MR1308352 |
. |
Date available:
|
2008-06-06T21:26:21Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/107505 |
. |
Reference:
|
[1] Abbot, J. C.: Semi-boolean algebra.Matem. Vestnik 4 (1967), 177–198. MR 0239957 |
Reference:
|
[2] Chajda, I.: Algebraic Theory of Tolerance Relations.Publ. Palacký University Olomouc 1991 (Czech Republic). Zbl 0747.08001 |
Reference:
|
[3] Chajda, I.: Tolerances in permutable algebras.Czech. Math. J. 38 (1988), 218–225. MR 0946289 |
Reference:
|
[4] Chajda, I.: On the existence of non-trivial tolerances in permutable algebras.Czech. Math. J. 40 (1990), 598–600. Zbl 0742.08002, MR 1084895 |
Reference:
|
[5] Chajda, I.: Every at most four element algebra has a Mal’cev theory for permutability.Math. Slovaca 41 (1991), 35–39. Zbl 0779.08001, MR 1094982 |
Reference:
|
[6] Chajda, I., Czédli, G.: Maltsev functions on small algebras.Studia Sci. Math. Hungarica (Budapest) 28 (1993), 339–348. MR 1266817 |
Reference:
|
[7] Chajda, I., Niederle, J., Zelinka, B.: On the existence conditions for compatible tolerances.Czech. Math. J. 26 (1976), 304–311. MR 0401561 |
Reference:
|
[8] Chajda, I., Zelinka, B.: Tolerances and congruences in implication algebras.Czech. Math. J. 38 (1988), 207–217. MR 0946288 |
Reference:
|
[9] Cornish, W. H.: On Iséki’s BCK-algebras.Lectures Notes in Pure and Appl. Math. 74 (1982), New York, 101–122. Zbl 0486.03033, MR 0647169 |
Reference:
|
[10] Gumm, H.-P.: Is there a Mal’cev theory for single algebras?.Algebra Univ. 8 (1978), 320–329. Zbl 0382.08003, MR 0472647 |
Reference:
|
[11] Mal’cev, A. I: On the general theory of algebraic systems (Russian).Matem. Sbornik 35 (1954), 3–20. |
Reference:
|
[12] Pixley, A. F.: Completeness in arithmetical algebras.Algebra Univ. 2 (1972), 177–192. Zbl 0254.08010, MR 0321843 |
Reference:
|
[13] Pixley, A. F.: Distributivity and permutability of congruence relations in equational classes of algebras.Proc. Amer. Math. Soc. 14 (1963). Zbl 0113.24804, MR 0146104 |
Reference:
|
[14] Raftery, J. G., Rosenberg, I. G., Sturm, T.: Tolerance relations and BCK-algebras.Math. Japon. 36 (1991). MR 1109222 |
Reference:
|
[15] Sturm, T.: On commutative BCK-algebras.Math. Japon. 27 (1982), 197–212. Zbl 0481.03043, MR 0655224 |
Reference:
|
[16] Tanaka, S.: On $\wedge $-commutative algebras.Math. Semin. Notes Kobe Univ. 3 (1975), 59–64. MR 0419222 |
Reference:
|
[17] Werner, H.: A Mal’cev condition for admissible relations.Algebra Univ. 3 (1973), 263. Zbl 0276.08004, MR 0330009 |
. |