Previous |  Up |  Next

Article

Title: Characterizing tolerance trivial finite algebras (English)
Author: Chajda, Ivan
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 30
Issue: 3
Year: 1994
Pages: 165-169
Summary lang: English
.
Category: math
.
Summary: An algebra $A$ is tolerance trivial if $A̰= A$ where $A̰$ is the lattice of all tolerances on $A$. If $A$ contains a Mal’cev function compatible with each $T$ $A̰$, then $A$ is tolerance trivial. We investigate finite algebras satisfying also the converse statement. (English)
Keyword: tolerance relation
Keyword: finite algebra
Keyword: lattice
Keyword: tolerance trivial algebra
Keyword: Mal’cev function
Keyword: Pixley function
Keyword: arithmetical algebra
MSC: 03E20
MSC: 08A30
MSC: 08A40
MSC: 08B05
idZBL: Zbl 0816.08003
idMR: MR1308352
.
Date available: 2008-06-06T21:26:21Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107505
.
Reference: [1] Abbot, J. C.: Semi-boolean algebra.Matem. Vestnik 4 (1967), 177–198. MR 0239957
Reference: [2] Chajda, I.: Algebraic Theory of Tolerance Relations.Publ. Palacký University Olomouc 1991 (Czech Republic). Zbl 0747.08001
Reference: [3] Chajda, I.: Tolerances in permutable algebras.Czech. Math. J. 38 (1988), 218–225. MR 0946289
Reference: [4] Chajda, I.: On the existence of non-trivial tolerances in permutable algebras.Czech. Math. J. 40 (1990), 598–600. Zbl 0742.08002, MR 1084895
Reference: [5] Chajda, I.: Every at most four element algebra has a Mal’cev theory for permutability.Math. Slovaca 41 (1991), 35–39. Zbl 0779.08001, MR 1094982
Reference: [6] Chajda, I., Czédli, G.: Maltsev functions on small algebras.Studia Sci. Math. Hungarica (Budapest) 28 (1993), 339–348. MR 1266817
Reference: [7] Chajda, I., Niederle, J., Zelinka, B.: On the existence conditions for compatible tolerances.Czech. Math. J. 26 (1976), 304–311. MR 0401561
Reference: [8] Chajda, I., Zelinka, B.: Tolerances and congruences in implication algebras.Czech. Math. J. 38 (1988), 207–217. MR 0946288
Reference: [9] Cornish, W. H.: On Iséki’s BCK-algebras.Lectures Notes in Pure and Appl. Math. 74 (1982), New York, 101–122. Zbl 0486.03033, MR 0647169
Reference: [10] Gumm, H.-P.: Is there a Mal’cev theory for single algebras?.Algebra Univ. 8 (1978), 320–329. Zbl 0382.08003, MR 0472647
Reference: [11] Mal’cev, A. I: On the general theory of algebraic systems (Russian).Matem. Sbornik 35 (1954), 3–20.
Reference: [12] Pixley, A. F.: Completeness in arithmetical algebras.Algebra Univ. 2 (1972), 177–192. Zbl 0254.08010, MR 0321843
Reference: [13] Pixley, A. F.: Distributivity and permutability of congruence relations in equational classes of algebras.Proc. Amer. Math. Soc. 14 (1963). Zbl 0113.24804, MR 0146104
Reference: [14] Raftery, J. G., Rosenberg, I. G., Sturm, T.: Tolerance relations and BCK-algebras.Math. Japon. 36 (1991). MR 1109222
Reference: [15] Sturm, T.: On commutative BCK-algebras.Math. Japon. 27 (1982), 197–212. Zbl 0481.03043, MR 0655224
Reference: [16] Tanaka, S.: On $\wedge $-commutative algebras.Math. Semin. Notes Kobe Univ. 3 (1975), 59–64. MR 0419222
Reference: [17] Werner, H.: A Mal’cev condition for admissible relations.Algebra Univ. 3 (1973), 263. Zbl 0276.08004, MR 0330009
.

Files

Files Size Format View
ArchMathRetro_030-1994-3_2.pdf 220.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo