Article

Full entry | PDF   (0.2 MB)
Keywords:
neutral differential equations; oscillatory (nonoscillatory) solutions
Summary:
This paper deals with the second order nonlinear neutral differential inequalities $(A_\nu )$: $(-1)^\nu x(t)\,\lbrace \,z^{\prime \prime }(t)+(-1)^\nu q(t)\,f(x(h(t))) \rbrace \le 0,\$ $t\ge t_0\ge 0,$ where $\ \nu =0\$ or $\ \nu =1,\$ $\ z(t)\,=\,x(t)\,+\,p(t)\,x(t-\tau ),\$ $\ 0<\tau =\$ const, $\ p,q,h:[t_0,\infty )\rightarrow R\$ $\ f:R\rightarrow R\$ are continuous functions. There are proved sufficient conditions under which every bounded solution of $(A_\nu )$ is either oscillatory or $\ \liminf \limits _{t\rightarrow \infty }|x(t)|=0.$
References:
[1] Bainov, D. D., Mishev, D. P.: Oscillation Theory for Neutral Equations with Delay. Adam Hilger IOP Pablisching Ltd. (1991) 288pp..
[2] Grammatikopoulos, M. K., Grove, E. A., Ladas, G.: Oscillation and asymptotic behavior of second order neutral differential equations with deviating arguments. Canad. Math. Soc. V8 (1967) 153$-$161. MR 0909906
[3] Graef, J. R., Grammatikopoulos, M. K., Spikes, P. W.: Asymptotic Properties of Solutions of Neutral Delay Differential Equations of the Second Order. Radovi Matematički $\ V_4\$ (1988) 113 $-$149.
[4] Graef, J. R., Grammatikopoulos, M. K., Spikes, P. W.: On the Asymptitic Behavior of Solutions of Second Order Nonlinear Neutral Delay Differential Equations. Journal Math. Anal. Appl. V156 $N_1$ (1991) 23$-$39. MR 1102594
[5] Graef, J. R., Grammatikopoulos, M. K., Spikes, P. W.: Asymptotic Behavior of Nonoscillatory Solutions of Neutral Delay Differential Equations of Arbitrary Order. Nonlinear Analysis, Theory, Math., Appl. V21, N1 (1993) 23$-$42. MR 1231526
[6] Györi, I., Ladas, G.: Oscillation Theory of Delay Differential Equations. Clear. Press., Oxford (1991) 368pp. MR 1168471
[7] Jaroš, J., Kussano, T.: Sufficient conditions for oscillations of higher order linear functional differential equations of neutral type. Japan J. Math.15 (1989) 415$-$432. MR 1039249
[8] Jaroš, J., Kusano, T.: Oscillation properties of first order nonlinear functional differential equations of neutral type. Diff. and Int. Equat. (1991) 425$-$436. MR 1081192
[9] Kusano, T., Onose, H.: Nonoscillation theorems for differential equation with deviating argument. Pacific J. Math. 63, $N_1$ (1976) 185$-$192. MR 0417536

Partner of