Previous |  Up |  Next

Article

Title: Prolongation of tangent valued forms to Weil bundles (English)
Author: Cabras, Antonella
Author: Kolář, Ivan
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 31
Issue: 2
Year: 1995
Pages: 139-145
Summary lang: English
.
Category: math
.
Summary: We prove that the so-called complete lifting of tangent valued forms from a manifold $M$ to an arbitrary Weil bundle over $M$ preserves the Frölicher-Nijenhuis bracket. We also deduce that the complete lifts of connections are torsion-free in the sense of M. Modugno and the second author. (English)
Keyword: Weil bundle
Keyword: tangent valued form
Keyword: Frölicher-Nijenhuis bracket
Keyword: complete lift
Keyword: connection
Keyword: torsion
MSC: 53C05
MSC: 58A20
idZBL: Zbl 0843.53021
idMR: MR1357981
.
Date available: 2008-06-06T21:28:31Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107533
.
Reference: [1] Gancarzewicz, J.: Complete lifts of tensor fields of type $(1, k)$ to natural bundles.Zeszyty Nauk. UJ, Krak¢w 23 (1982), 43–79. Zbl 0547.55014, MR 0670571
Reference: [2] Gancarzewicz, J., Mikulski, W., Pogoda, Z.: Lifts of some tensor fields and connections to product preserving functors.to appear in Nagoya Math. J. MR 1295815
Reference: [3] Kol ©, I.: Covariant approach to natural transformations of Weil functors.Comment. Math. Univ. Carolinae 27 (1986), 723–729. MR 0874666
Reference: [4] Kol ©, I., Michor, P. W., Slov k, J.: Natural operations in differential geometry.Springer-Verlag 1993. MR 1202431
Reference: [5] Kol ©, I. Modugno, M.: Torsions of connections on some natural bundles.Differential Geometry and Its Applications 2 (1992), 1–16. MR 1244453
Reference: [6] Mangiarotti, L. Modugno. M.: Graded Lie algebras and connections on a fibred space.Journ. Math. Pures and Appl. 83 (1984), 111–120. MR 0776913
Reference: [7] Morimoto, A.: Prolongations of connections to bundles of infinitely near points.J. Diff. Geo. 11 (1976), 479–498. MR 0445422
Reference: [8] Slov k, J.: Prolongations of connections and sprays with respect to Weil functors.Suppl. Rendiconti Circolo Mat. Palermo, Serie II 14 (1987), 143–155. MR 0920852
Reference: [9] Weil, A.: Théorie des pointes proches sur les variétés différentielles.Colloque de topologie et géométrie différentielle, Strasbourg (1953), 111–117. MR 0061455
.

Files

Files Size Format View
ArchMathRetro_031-1995-2_5.pdf 250.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo