Previous |  Up |  Next


Weil bundle; tangent valued form; Frölicher-Nijenhuis bracket; complete lift; connection; torsion
We prove that the so-called complete lifting of tangent valued forms from a manifold $M$ to an arbitrary Weil bundle over $M$ preserves the Frölicher-Nijenhuis bracket. We also deduce that the complete lifts of connections are torsion-free in the sense of M. Modugno and the second author.
[1] Gancarzewicz, J.: Complete lifts of tensor fields of type $(1, k)$ to natural bundles. Zeszyty Nauk. UJ, Krak¢w 23 (1982), 43–79. MR 0670571 | Zbl 0547.55014
[2] Gancarzewicz, J., Mikulski, W., Pogoda, Z.: Lifts of some tensor fields and connections to product preserving functors. to appear in Nagoya Math. J. MR 1295815
[3] Kol ©, I.: Covariant approach to natural transformations of Weil functors. Comment. Math. Univ. Carolinae 27 (1986), 723–729. MR 0874666
[4] Kol ©, I., Michor, P. W., Slov k, J.: Natural operations in differential geometry. Springer-Verlag 1993. MR 1202431
[5] Kol ©, I. Modugno, M.: Torsions of connections on some natural bundles. Differential Geometry and Its Applications 2 (1992), 1–16. MR 1244453
[6] Mangiarotti, L. Modugno. M.: Graded Lie algebras and connections on a fibred space. Journ. Math. Pures and Appl. 83 (1984), 111–120. MR 0776913
[7] Morimoto, A.: Prolongations of connections to bundles of infinitely near points. J. Diff. Geo. 11 (1976), 479–498. MR 0445422
[8] Slov k, J.: Prolongations of connections and sprays with respect to Weil functors. Suppl. Rendiconti Circolo Mat. Palermo, Serie II 14 (1987), 143–155. MR 0920852
[9] Weil, A.: Théorie des pointes proches sur les variétés différentielles. Colloque de topologie et géométrie différentielle, Strasbourg (1953), 111–117. MR 0061455
Partner of
EuDML logo