Previous |  Up |  Next

Article

Title: Improvement of inequalities for the $(r,q)$-structures and some geometrical connections (English)
Author: Bálint, Vojtech
Author: Lauron, Philippe
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 31
Issue: 4
Year: 1995
Pages: 283-289
Summary lang: English
.
Category: math
.
Summary: The main results are the inequalities (1) and (6) for the minimal number of $(r,q)$-structure classes,which improve the ones from [3], and also some geometrical connections, especially the inequality (13). (English)
Keyword: structure
Keyword: line
Keyword: circle
Keyword: horocycle
MSC: 05B30
MSC: 51E30
MSC: 52C10
idZBL: Zbl 0846.05012
idMR: MR1390587
.
Date available: 2008-06-06T21:29:26Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107549
.
Reference: [1] Bálint, V.: On a certain class of incidence structures.Práce a štúdie Vysokej Školy Dopravnej v Žiline 2 (1979), 97-106 (In Slovak; summary in English, German and Russian). MR 0675948
Reference: [2] Bálint, V., Bálintová, A.: On the number of circles determined by $n$ points in Euclidean plane.Acta Mathematica Hungarica 63 (3-4) (1994), 283-289. MR 1261471
Reference: [3] Bálint, V., Lauron, Ph.: Some inequalities for the $(r,q)$-structures.STUDIES OF UNIVERSITY OF TRANSPORT AND COMMUNICATIONS IN ŽILINA, Mathematical - Physical Series, Volume 10 (1995), 3-10. MR 1643894
Reference: [4] Beck, J.: On the lattice property of the plane and some problems of Dirac, Motzkin and Erdős in combinatorical geometry.Combinatorica 3 (3-4) (1983), 281-297. MR 0729781
Reference: [5] Borwein, P., Moser, W. O. J.: A survey of Sylvester’s problem and its generalizations.Aequa. Math. 40 (1990), 111-135. MR 1069788
Reference: [6] de Bruijn, N. G., Erdős, P.: On a combinatorical problem.Nederl. Acad. Wetensch. 51 (1948), 1277-1279. MR 0028289
Reference: [7] Csima, J., Sawyer, E. T.: A short proof that there exist $6n/13$ ordinary points.Discrete and Computational Geometry 9 (1993), no. 2, 187-202. MR 1194036
Reference: [8] Elekes, G.: $n$ points in the plane can determine $n^{3\over 2}$ unit circles.Combinatorica 4 (1984), 131. Zbl 0561.52009, MR 0771719
Reference: [9] Elliott, P. D. T. A.: On the number of circles determined by $n$ points.Acta Math. Acad. Sci. Hung. 18 (3-4) (1967), 181-188. Zbl 0163.14701, MR 0213939
Reference: [10] Erdős, P.: Néhány geometriai problémáról.Mat. Lapok 8 (1957), 86-92. MR 0098072
Reference: [11] Erdős, P.: On some metric and combinatorical geometric problems.Discrete Math. 60 (1986), 147-153. MR 0852104
Reference: [12] Hansen, S.: Contributions to the Sylvester-Gallai-Theory.Doctoral dissertation, University of Copenhagen, 1981.
Reference: [13] Harborth, H., Mengersen, I.: Point sets with many unit circles.Discrete Math. 60 (1985), 193-197. MR 0852106
Reference: [14] Harborth, H.: Einheitskreise in ebenen Punktmengen.3.Kolloquium über Diskrete Geometrie, Institut für Mathematik der Universität Salzburg (1985), 163-168. Zbl 0572.52020
Reference: [15] Jucovič, E.: Problem $24$.Combinatorical Structures and their Applications, New York-London-Paris, Gordon and Breach, 1970.
Reference: [16] Kelly, L. M., Moser, W. O. J.: On the number of ordinary lines determined by $n$ points.Canad. J. Math. 10 (1958), 210-219. MR 0097014
Reference: [17] Klee, V., Wagon, S.: Old and New Unsolved Problems in Plane Geometry and Number Theory.Mathematical Assoc. Amer., Washington, DC, 1991. MR 1133201
Reference: [18] Sylvester, J. J.: Mathematical Question $11851$.Educational Times 59 (1893), 98.
.

Files

Files Size Format View
ArchMathRetro_031-1995-4_5.pdf 249.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo