Previous |  Up |  Next

Article

Title: On the existence of periodic solutions for nonconvex differential inclusions (English)
Author: Kravvaritis, Dimitrios
Author: Papageorgiou, Nikolaos S.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 32
Issue: 1
Year: 1996
Pages: 1-8
Summary lang: English
.
Category: math
.
Summary: Using a Nagumo type tangential condition and a recent theorem on the existence of directionally continuous selector for a lower semicontinuous multifunctions, we establish the existence of periodic trajectories for nonconvex differential inclusions. (English)
Keyword: lower semicontinuous multifunction
Keyword: $C_M$-continuous selector
Keyword: tangent cone
Keyword: contingent derivative
Keyword: Filippov regularization
Keyword: fixed point
MSC: 34A60
MSC: 34G20
idZBL: Zbl 0870.34018
idMR: MR1399836
.
Date available: 2008-06-06T21:29:51Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107557
.
Reference: [1] Aubin, J.-P.: A survey of viability theory.SIAM J. Control Optim. 28 (1990), 749-788. Zbl 0714.49021, MR 1051623
Reference: [2] Aubin, J.-P., Cellina, A.: Differential Inclusions.Springer, Berlin, 1984. MR 0755330
Reference: [3] Bressan, A.: Directionally continuous selections and differential inclusions.Funkc. Ekvac. 31 (1988), 459-470. Zbl 0676.34014, MR 0987798
Reference: [4] Haddad, G., Lasry, J.-M.: Periodic solutions of functional differential inclusions and fixed points of $\sigma $-selectionable correspondes.J. Math. Anal. Appl. 96 (1983), 295-312. MR 0719317
Reference: [5] Himmelberg, C., Van Vleck, F. S.: A note on solutions sets of differential inclusions.Rocky Mountain J. Math. 12 (1982), 621-625. MR 0683856
Reference: [6] Lasry, J.-M., Robert, R.: Degré topologique pour certains couples de fonctions et applications aux equations differentielles multivoques.C. R. Acad. Sci. Paris t. 283 (1976), 163-166. MR 0436196
Reference: [7] Macki, J., Nistri, P., Zecca, P.: The existence of periodic solutions to nonautonomous differential inclusions.Proc. Amer. Math. Soc. 104 (1988), 840-844. MR 0931741
Reference: [8] Michael, E.: Continuous selections I.Annals of Math. 63 (1956), 361-381. Zbl 0071.15902, MR 0077107
Reference: [9] Moreau, J.-J.: Intersection of moving convex sets in a normed space.Math. Scand. 36 (1975), 159-173. Zbl 0311.54015, MR 0442644
Reference: [10] Oxtoby, J.: Measure and Category.Springer, New York (1971). Zbl 0217.09201, MR 0584443
Reference: [11] Papageorgiou, N. S.: On the attainable set of differential inclusions and control systems.J. Math. Anal. Appl. 125 (1987), 305-322. Zbl 0636.49018, MR 0896170
Reference: [12] Papageorgiou, N. S.: Viable and periodic trajectories for differential inclusions in Banach spaces.Kobe Jour. Math. 5 (1988), 29-42. MR 0988577
Reference: [13] Papageorgiou, N. S.: On the existence of $\psi $-minimal viable solutions for a class of differential inclusions.Archivum Mathematicum (Brno) 27 (1991), 175-182. Zbl 0759.34014, MR 1189213
.

Files

Files Size Format View
ArchMathRetro_032-1996-1_1.pdf 251.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo