Previous |  Up |  Next

Article

Title: Principal prolongations and geometries modeled on homogeneous spaces (English)
Author: Slovák, Jan
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 32
Issue: 4
Year: 1996
Pages: 325-342
Summary lang: English
.
Category: math
.
Summary: We discuss frame bundles and canonical forms for geometries modeled on homogeneous spaces. Our aim is to introduce a geometric picture based on the non-holonomic jet bundles and principal prolongations as introduced in [Kolář, 71]. The paper has a partly expository character and we focus on very general aspects only. In the final section, various links to known results on the parabolic geometries are given briefly and some directions for further investigations are roughly indicated. (English)
Keyword: jet prolongation
Keyword: principal prolongation
Keyword: Cartan connection
MSC: 53A55
MSC: 58A20
idZBL: Zbl 0881.58006
idMR: MR1441403
.
Date available: 2008-06-06T21:31:44Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107585
.
Reference: [1] Alekseevsky, D.V.; Michor, P.W.: Differential geometry of Cartan connections.ESI Preprint 39, Publ. Math. Debrecen 47 (1995), 349–375. MR 1362298
Reference: [2] Baston, R. J.: Almost Hermitian symmetric manifolds, I: Local twistor theory;.Duke Math. J. 63 (1991), 81–111. Zbl 0724.53019, MR 1106939
Reference: [3] Čap, A.; Schichl, H.: .paper in preparation.
Reference: [4] Čap, A.; Slovák, J.: On local flatness of AHS–manifolds.to appear in Rendiconti Circ. Mat. Palermo, Proceedings of the Winter School Geometry and Physics, Srní1995.
Reference: [5] Čap, A.; Slovák, J.; Souček, V.: Invariant Operators on Manifolds with Almost Hermitian Symmetric Structures, I. Invariant Differentiation.electronically available at ftp.esi.ac.at, Preprint ESI 186 (1994), 31 pp. MR 1474550
Reference: [6] Čap, A.; Slovák, J.; Souček, V.: Invariant Operators on Manifolds with Almost Hermitian Symmetric Structures, II. Normal Cartan connections.electronically available at ftp.esi.ac.at, Preprint ESI 194 (1995), 16 pp. MR 1620484
Reference: [7] Kobayashi, S.: Transformation groups in differential geometry.Springer-Verlag, Berlin, Heidelberg, New York, 1972. Zbl 0246.53031, MR 0355886
Reference: [8] Kolář, I.: Canonical forms on the prolongations of principal fiber bundles.Rev. Roumaine Math. Pures Appl. 16 (1971), 1091–1106. MR 0301668
Reference: [9] Kolář, I.: Higher order torsions of spaces with Cartan Connection.Cahiers Topologie Géom. Différentielle 12 (1971), 137–146. MR 0315619
Reference: [10] Kolář, I.: Generalized $G$-structures and $G$-structures of higher order.Bollettino U. M. Ital. 12, Suppl. 3 (1975), 245–256. MR 0445424
Reference: [11] Kolář, I.: A generalization of the torsion form.Časopis pro pěstování matematiky 100 (1975), 284–290. MR 0383287
Reference: [12] Kolář, I.; Michor, P. W.; Slovák, J.: Natural operations in differential geometry.Springer-Verlag, Berlin Heidelberg New York, 1993. MR 1202431
Reference: [13] Kriegl, A.; Michor, P. W.: The Convenient Setting for Global Analysis.to appear, Surveys and Monographs, AMS, Providence, 1997. MR 1471480
Reference: [14] Libermann, P.: Sur les prolongements des fibrés principaux et des groupoides différentiables banachiques.Analyse global, Sém. Mat. Supérieures, No. 42 (Été, 1969) (1971), 7–108. Zbl 0248.53031, MR 0356117
Reference: [15] Morimoto, T.: Geometric structures on filtered manifolds.Hokkaido Math. J. 22 (1993), 263–347. Zbl 0801.53019, MR 1245130
Reference: [16] Slovák, J.: The principal prolongation of first order $G$-structures.Proceedings of the Winter School Geometry and Physics, Srní 1994, Supplemento ai Rendiconti Circ. Mat. Palermo 39 (1996), 123–131. MR 1396607
Reference: [17] Tanaka, N.: On differential systems, graded Lie algebras and pseudo-groups.J. Math. Kyoto Univ. 10 (1970), 1–82. Zbl 0206.50503, MR 0266258
Reference: [18] Tanaka, N.: On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections.Japanese J. Math. 2 (1976), 131–190. Zbl 0346.32010, MR 0589931
Reference: [19] Tanaka, N.: On the equivalence problems associated with simple graded Lie algebras.Hokkaido Math. J. 8 (1979), 23–84. Zbl 0409.17013, MR 0533089
.

Files

Files Size Format View
ArchMathRetro_032-1996-4_8.pdf 360.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo