Previous |  Up |  Next

Article

Title: Higher order Cartan connections (English)
Author: Virsik, George
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 32
Issue: 4
Year: 1996
Pages: 343-354
Summary lang: English
.
Category: math
.
Summary: A Cartan connection associated with a pair $P(M,G^{\prime })\subset P(M,G)$ is defined in the usual manner except that only the injectivity of $\omega :T(P^{\prime })\rightarrow T(G)_{e}$ is required. For an $r$-th order connection associated with a bundle morphism $\Phi :P^{\prime }\rightarrow P$ the concept of Cartan order $q\le r$ is defined, which for $q=r=1, \Phi :P^{\prime }\subset P$, and $\dim {M}=\dim {G/G^{\prime }}$ coincides with the classical definition. Results are obtained concerning the Cartan order of $r$-th order connections that are the product of $r$ first order (Cartan) connections. (English)
Keyword: non-holonomic jets and connections
Keyword: semi-holonomic jets and connections
Keyword: higher order relative
Keyword: straight and Cartan connections
MSC: 53C05
MSC: 58A20
idZBL: Zbl 0881.53014
idMR: MR1441404
.
Date available: 2008-06-06T21:31:48Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107586
.
Reference: [1] Ehresmann C.: Extension du calcul des jets aux jets non holonomes.C.R.A.S. Paris 239(1954), 1762–1764. Zbl 0057.15603, MR 0066734
Reference: [2] Ehresmann C.: Sur les connexions d’ordre supérieur.Atti $V^0$ Cong. Un. Mat. Italiana, Pavia-Torino, 1956, 326–328.
Reference: [3] Kobayashi S.: Transformation groups in differential geometry.Ergebnisse der Mathematik 70, Springer Verlag, 1972. Zbl 0829.53023, MR 0355886
Reference: [4] Kobayashi S., Nomizu K.: Foundations of differential geometry, Vol. 1.Wiley-Interscience, 1963. MR 0152974
Reference: [5] Kolář I.: Some higher order operations with connections.Czech. Math. J. 24(99) (1974), 311–330. MR 0356114
Reference: [6] Kolář I.: On some operations with connections.Math. Nachrichten 69(1975), 297–306. MR 0391157
Reference: [7] Kolář I., Michor P. W., Slovák J.: Natural Operations in Differential Geometry.Springer-Verlag, 1993. MR 1202431
Reference: [8] Virsik G.: Total connections in Lie groupoids.Arch. Math. (Brno) 31 (1995), 183-200. Zbl 0841.53024, MR 1368257
Reference: [9] Virsik G.: Bunch connections.Diff. Geom. and Applications, Proc. Conf. 1995, Brno, Czech republic, Masaryk University, Brno (1996), 215-229. Zbl 0864.53017, MR 1406340
.

Files

Files Size Format View
ArchMathRetro_032-1996-4_9.pdf 303.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo