Previous |  Up |  Next

Article

Title: Calculus of flows on convenient manifolds (English)
Author: Zajtz, Andrzej
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 32
Issue: 4
Year: 1996
Pages: 355-372
Summary lang: English
.
Category: math
.
Summary: The study of diffeomorphism group actions requires methods of infinite dimensional analysis. Really convenient tools can be found in the Frölicher - Kriegl - Michor differentiation theory and its geometrical aspects. In terms of it we develop the calculus of various types of one parameter diffeomorphism groups in infinite dimensional spaces with smooth structure. Some spectral properties of the derivative of exponential mapping for manifolds are given. (English)
Keyword: flow
Keyword: diffeomorphism group
Keyword: regular Lie group action
Keyword: Frölicher-Kriegl differential calculus
Keyword: 1-parameter group of bounded operators
MSC: 22E65
MSC: 58B25
MSC: 58D05
idZBL: Zbl 0881.58012
idMR: MR1441405
.
Date available: 2008-06-06T21:31:52Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107587
.
Reference: [1] Frölicher A., Kriegl A.: Linear spaces and differentiation theory.Pure and Applied Mathematics, J. Wiley, Chichester, 1988. Zbl 0657.46034, MR 0961256
Reference: [2] Grabowski J.: Free subgroups of diffeomorphism groups.Fundamenta Math. 131(1988), 103-121. Zbl 0666.58011, MR 0974661
Reference: [3] Grabowski J.: Derivative of the exponential mapping for infinite dimensional Lie groups.Annals Global Anal. Geom. 11(1993), 213-220. Zbl 0836.22028, MR 1237454
Reference: [4] Hamilton R. S.: The inverse function theorem of Nash and Moser.Bull. Amer. Math. Soc. 7(1982), 65-222. Zbl 0499.58003, MR 0656198
Reference: [5] Kolář I., Michor P., Slovák J.: Natural operations in differential geometry.Springer-Verlag, Berlin, Heidelberg, New York, 1993. Zbl 0782.53013, MR 1202431
Reference: [6] Kriegl A., Michor P.: Regular infinite dimensional Lie groups.to appear, J. of Lie Theory, 37. Zbl 0893.22012, MR 1450745
Reference: [7] Mather J.: Characterization of Anosov diffeomorphisms.Ind.Math., vol. 30, 5(1968), 473-483. Zbl 0165.57001, MR 0248879
Reference: [8] Omori H., Maeda Y., Yoshioka A.: On regular Fréchet Lie groups IV. Definitions and fundamental theorems.Tokyo J. Math. 5(1982), 365-398. MR 0688131
Reference: [9] Pazy A.: Semigroups of linear operators and applications to Partial Differential Equations.Springer-Verlag New York, 1983. Zbl 0516.47023, MR 0710486
.

Files

Files Size Format View
ArchMathRetro_032-1996-4_10.pdf 302.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo