Previous |  Up |  Next

Article

Title: On Veronese-Borůvka spheres (English)
Author: Kenmotsu, K.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 33
Issue: 1
Year: 1997
Pages: 37-40
Summary lang: English
.
Category: math
.
Summary: In this paper, history of reserches for minimal immersions from constant Gaussian curvature 2-manifolds into space forms is explained with special emphasis of works of O. Borůvka. Then recent results for the corresponding probrem to classify minimal immersions of such surfaces in complex space forms are discussed. (English)
Keyword: minimal immersions
Keyword: constant curvature surfaces
Keyword: harmonic maps
MSC: 53A10
MSC: 53C42
idZBL: Zbl 0910.53002
idMR: MR1464299
.
Date available: 2008-06-06T21:32:21Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107595
.
Reference: [1] S. Bando Y. Ohnita: Minimal 2-spheres with constant curvature in $P_{n}(C)$.J. Math. Soc. Japan 39(1987), 477-487. MR 0900981
Reference: [2] J. Bolton G. R. Jensen M. Rigoli L. M. Woodward: On conformal minimal immersions of $S^{2}$ into $CP^{n}$.Math. Ann. 279(1988), 599-620. MR 0926423
Reference: [3] O. Borůvka: Sur une classe de surfaces minima plongées dans un espace á quatre dimensions á courbure constante.Bull. Intern. de l’Acad. Tech. des Sci. Prague 29(1928), 256-277.
Reference: [4] O. Borůvka: Recherches sur la courbure des surfaces dans des espaces à n dimensions à courbure constante I.Publ. de la Fac. des Sci. de L’universite Masaryk (1932) 2-22.
Reference: [5] O. Borůvka: Sur les surfaces representées par les fonctions sphériques de premiere espéce.J. Math. Pure et Appl. (1933) 337-383.
Reference: [6] R. L. Bryant: Minimal surfaces of constant curvature in $S^{n}$.Trans. Amer. Math. Soc. 290(1985), 259-271. MR 0787964
Reference: [7] E. Calabi: Minimal immersions of surfaces in euclidean spheres.J. Diff. Geo. 1(1967), 111-125. Zbl 0171.20504, MR 0233294
Reference: [8] Q-S. Chi Y. Zheng: Rigidity of pseudo-holomorphic curves of constant curvature in Grassmann manifolds.Trans. Amer. Math. Soc. 313(1989), 393-406. MR 0992602
Reference: [9] Q-S. Chi G. R. Jensen R. Liao: Isoparametric Functions and Flat Minimal Tori in $CP^{2}$.Proc. Amer. Math. Soc. 123(1995), 2849-2854. MR 1260163
Reference: [10] K. Kenmotsu: On minimal immersions of $R^{2}$ into $S^{n}$.Jour. of Math. Soc. Japan 28(1976), 182-191. MR 0405218
Reference: [11] K. Kenmotsu: Minimal surfaces with constant curvature in 4-dimensional space forms.Proc. Amer. Math. Soc. 89(1983), 133-138. Zbl 0531.53046, MR 0706526
Reference: [12] K. Kenmotsu: On minimal immersions of $R^{2}$ into $P^{n}(C)$.Jour. of Math. Soc. Japan 37(1985), 663-680. MR 0806307
Reference: [13] K. Kenmotsu K. Masuda: On the Kähler angles of minimal surfaces of constant curvature in $CP^{2}$.in preparation.
Reference: [14] G. Ludden M. Okumura K. Yano: A totally real surface in $CP^{2}$ that is not totally geodesic.Proc. Amer. Math. Soc. 53(1975), 186-190. MR 0380683
Reference: [15] T. Ogata: U.Simon’s conjectures on minimal submanifolds in a sphere.Bull. Yamagata Univ. 11(1987), 345-350. MR 0879861
Reference: [16] Y. Ohnita: Minimal surfaces with constant curvature and Kähler angle in complex space forms.Tsukuba J. Math. 13(1989), 191-207. Zbl 0678.53055, MR 1003602
Reference: [17] J. Simons: Minimal varieties in riemannian manifolds.Ann. Math. 88(1968), 62-105. Zbl 0181.49702, MR 0233295
Reference: [18] N. Wallach: Extension of locally defined minimal immersions of spheres into spheres.Arch. Math. 21(1970), 210-213. MR 0271878
.

Files

Files Size Format View
ArchMathRetro_033-1997-1_6.pdf 213.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo