Previous |  Up |  Next

Article

Title: Dispersions for linear differential equations of arbitrary order (English)
Author: Neuman, František
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 33
Issue: 1
Year: 1997
Pages: 147-155
Summary lang: English
.
Category: math
.
Summary: For linear differential equations of the second order in the Jacobi form \[ y^{\prime \prime } + p(x)y = 0 \] O. Borvka introduced a notion of dispersion. Here we generalize this notion to certain classes of linear differential equations of arbitrary order. Connection with Abel’s functional equation is derived. Relations between asymptotic behaviour of solutions of these equations and distribution of zeros of their solutions are also investigated. (English)
Keyword: linear differential equations
Keyword: distribution of zeros
Keyword: asymptotic behaviour
Keyword: Abel’s functional equation
MSC: 34C10
MSC: 34C11
MSC: 34C99
MSC: 39B22
idZBL: Zbl 0914.34010
idMR: MR1464309
.
Date available: 2008-06-06T21:32:58Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107605
.
Reference: [1] E. Barvínek: O rozložení nulových bodů řešení lineární diferenciální rovnice $y^{\prime \prime }=Q(t)y$ a jejich derivací.Acta F. R. N. Univ. Comenian 5 (1961), 465–474.
Reference: [2] O. Borůvka: Linear Differential Transformations of the Second Order.The English Univ. Press, London, 1971. MR 0463539
Reference: [3] B. Choczewski: On differentiable solutions of a functional equation.Ann. Polon. Math. 13 (1963), 133–138. MR 0153998
Reference: [4] M. Kuczma: Functional Equations in a Single Variable.PWN, Warszawa, 1968. Zbl 0196.16403, MR 0228862
Reference: [5] F. Neuman: Distribution of zeros of solutions of $y^{\prime \prime } = q(t)y$ in relation to their behaviour in large.Studia Sci. Math. Hungar 8 (1973), 177–185. Zbl 0286.34050, MR 0333344
Reference: [6] F. Neuman: Global Properties of Linear Ordinary Differential Equations.Mathematics and Its Applications (East European Series) 52, Kluwer Acad. Publ., Dordrecht-Boston-London, 1991, ISBN 0-7923-1269-4. MR 1192133
.

Files

Files Size Format View
ArchMathRetro_033-1997-1_16.pdf 241.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo