Previous |  Up |  Next

Article

Title: Some classes of linear $n$th-order differential equations (English)
Author: Šeda, Valter
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 33
Issue: 1
Year: 1997
Pages: 157-165
Summary lang: English
.
Category: math
.
Summary: Sufficient conditions for the $n$-th order linear differential equation are derived which guarantee that its Cauchy function $K$, together with its derivatives ${\partial ^i K}\over {\partial t^i}$, $i=1,\dots ,n-1$, is of constant sign. These conditions determine four classes of the linear differential equations. Further properties of these classes are investigated. (English)
Keyword: Cauchy function
Keyword: Čaplygin comparison theorem
Keyword: monotonic solutions
Keyword: regularity of bands
MSC: 34A40
MSC: 34D05
idZBL: Zbl 0914.34011
idMR: MR1464310
.
Date available: 2008-06-06T21:33:01Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107606
.
Reference: [1] O. Borůvka: Lineare Differentialtransformationen 2.Ordnung.VEB, Berlin, 1967.
Reference: [2] M. Gera: Bedingungen der Nichtoszillationsfähigkeit für die lineare Differentialgleichung dritter Ordnung $ y^{\prime \prime \prime }+p_1(x)y^{\prime \prime } +p_2(x)y^{\prime }+p_3(x)y=0 $.Acta F. R. N. Univ. Comen.-Mathematica XXIII (1969), 13–34. Zbl 0216.11303, MR 0291554
Reference: [3] M. Gera: Bedingungen der Nicht-oszillationsfähigkeit und der Oszillationsfähigkeit für die lineare Differentialgleichung dritter Ordnung.Mat. časop. 21 (1971), 65–80. Zbl 0216.11302, MR 0304769
Reference: [4] M. Gera: Einige oszillatorische Eigenschaften der Lösungen der Differentialgleichung dritter Ordnung $ y^{\prime \prime \prime }+p(x)y^{\prime }+q(x)y=0 $.Scripta Fac. Sci. Nat. UJEP Brunensis, Arch. Math. VII (1971), 65–76. Zbl 0241.34037, MR 0306610
Reference: [5] M. Greguš: Third Order Linear Differential Equations.D. Reidel Publ. Co., Dordrecht, 1987. MR 0882545
Reference: [6] Ph. Hartman: Ordinary Differential Equations.J. Wiley and Sons, New York, 1964. Zbl 0125.32102, MR 0171038
Reference: [7] I. T. Kiguradze, T. A. Čanturija: Asymptotical Properties of Solutions of Nonautonomous Ordinary Differential Equations.Nauka, Moscow, 1990. (Russian)
Reference: [8] M. A. Krasnoseľskij: Approximate Solution of Operator Equations.Nauka, Moscow, 1969. (Russian) MR 0259635
Reference: [9] F. Neuman: Global Properties of Linear Ordinary Differential Equations.Academia, Praha, 1991. Zbl 0784.34009, MR 1192133
Reference: [10] R. Rabczuk: Foundations of Differential Inequalities.Pan. Wydav. Nauk., Warsaw, 1976. (Polish) MR 0457827
Reference: [11] J. Regenda: Oscillatory and Nonoscillatory Properties of Solutions of the Differential Equation $y^{(4)}+P(t)y"+Q(t)y=0$.Math. Slovaca 28 (1978), 329–342. MR 0534812
Reference: [12] E. Rovderová: Existence of a Monotone Solution of a Nonlinear Differential Equation.J. Math. Anal. Appl. 192 (1995), 1–15. MR 1329409
Reference: [13] V. Šeda: On a Class of Linear $n$-th Order Differential Equations.Czech. Math. J. 39(114) (1989), 350–369.
.

Files

Files Size Format View
ArchMathRetro_033-1997-1_17.pdf 265.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo