Full entry |
PDF
(0.2 MB)
Feedback

linear functional-differential system; differential system with deviated argument; $\omega$-periodic solution

References:

[1] N.V. Azbelev, V.P. Maksimov and L.F. Rakhmatullina: **Introduction to the Theory of Functional Differential Equations**. (Russian) Nauka, Moscow, 1991. MR 1144998

[2] E.A. Coddington and N. Levinson: **Theory of Ordinary Differential Equations**. McGraw-Hill Book Company, Inc., New York Toronto London, 1955. MR 0069338

[3] J. Cronin: **Periodic solutions of some nonlinear differential equations**. J. Differential Equations 3 (1967), 31-46. MR 0204770 | Zbl 0153.12401

[4] J.K. Hale: **Periodic and almost periodic solutions of functional-differential equations**. Arch. Rational Mech. Anal. 15 (1964), 289-304. MR 0164096 | Zbl 0129.06006

[5] P. Hartman: **Ordinary Differential Equations**. John Wiley, New York, 1964. MR 0171038 | Zbl 1009.34001

[6] A. Halanay: **Optimal control of periodic solutions**. Rev. Roumaine Math. Pures Appl. 19 (1974), 3-16. MR 0344968 | Zbl 0276.49012

[7] G.S. Jones: **Asymptotic fixed point theorems and periodic systems of functional-differential equations**. Contr. Diff. Eqn 2 (1963), 385-405. MR 0158135 | Zbl 0131.13602

[8] I.T. Kiguradze: **On periodic solutions of systems of non-autonomous ordinary differential equations**. (Russian) Mat. zametki 39 (1986), No.4, 562-575. MR 0842886

[9] I.T. Kiguradze: **Boundary Value Problems for Systems of Ordinary Differential Equations**. (Russian) Modern problems in mathematics. The latest achievements (Itogi Nauki i Tekhniki. VINITI Acad. Sci. USSR), Moscow, 1987, V.30, 3-103. MR 0925829 | Zbl 0956.34505

[10] I.T. Kiguradze and B. Půža: **On some boundary value problems for ordinary differential equation systems**. (Russian) Diff. Uravnenija 12 (1976), No.12, 2139-2148. MR 0473302

[11] I.T. Kiguradze and B. Půža: **On boundary value problems for systems of linear functional differential equations**. Czech. Math. J. To appear.

[12] M.A. Krasnosel’skij: **An alternative priciple for establishing the existence of periodic solutions of differential equations with a lagging argument**. Soviet Math. Dokl. 4 (1963), 1412-1415.

[13] M.A. Krasnosel’skij: **The theory of periodic solutions of non-autonomous differential equations**. (Russian) Math. Surveys 21 (1966), 53-74.

[14] M.A. Krasnosel’skij: **The Operator of Translation along the Trajectories of Differential Equations**. (Russian) Nauka, Moscow, 1966.

[15] M.A. Krasnosel’skij and A.I. Perov: **On a existence principle for bounded, periodic and almost periodic solutions of systems of ordinary differential equations**. (Russian) Dokl. Akad. Nauk SSSR 123 (1958), 235-238. MR 0104870

[16] J. Kurzweil: **Generalized ordinary differential equations and continuous dependence on a parameter**. Czechoslovak Math. J. 7 (1957), 418-449. MR 0111875 | Zbl 0094.05902

[17] J. Kurzweil and Z. Vorel: **Continuous dependence of solutions of differential equations on a parameter**. (Russian) Czechoslovak Math. J. 7 (1957), 568-583. MR 0111874

[18] J. Mawhin: **Periodic Solutions of Nonlinear Functional Differential Equations**. J. Diff. Equ. 10 (1971), 240-261. MR 0294823 | Zbl 0223.34055

[19] Z. Opial: **Continuous parameter dependence in linear systems of differential equations**. J. Diff. Eqs. 3 (1967), 571-579. MR 0216056 | Zbl 0219.34004

[20] T.A. Osechkina: **Kriterion of unique solvability of periodic boundary value problem for functional differential equation**. (Russian) Izv. VUZ. Matematika No. 10 (1994), 48-52. MR 1392339

[21] K. Schmitt: **Periodic solutions of nonlinear differential systems**. J. Math. Anal. and Appl. 40 (1972), No.1, 174-182. MR 0313589 | Zbl 0257.34044

[22] æ. Schwabik, M. Tvrdì and O. Vejvoda: **Differential and Integral Equations: Boundary Value Problems and Adjoints**. Academia, Praha, 1979. MR 0542283

[23] S. Sedziwy: **Periodic solutions of a system of nonlinear differential equations**. Proc. Amer. Math. Soc. 48 (1975), No.8, 328-336. MR 0357980 | Zbl 0331.34039

[24] Z. Vorel: **Continuous dependence of parameters**. Nonlinear Anal. Theory Meth. and Appl. 5 (1981), No.4, 373-380. MR 0611649

[25] T. Yoshizawa: **Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions**. Springer-Verlag, New York Heidelberg Berlin, 1975. MR 0466797 | Zbl 0304.34051