Previous |  Up |  Next

Article

Title: On periodic solutions of systems of linear functional-differential equations (English)
Author: Kiguradze, Ivan
Author: Půža, Bedřich
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 33
Issue: 2
Year: 1997
Pages: 197-212
Summary lang: English
.
Category: math
.
Summary: This paper deals with the system of functional-differential equations \[ \frac{dx(t)}{dt}=p(x)(t)+q(t), \] where $p:C_\omega ({R}^n)\rightarrow L_\omega ({R}^n)$ is a linear bounded operator, $q\in L_\omega ({R}^n)$, $\omega >0$ and $C_\omega ({R}^n)$ and $L_\omega ({R}^n)$ are spaces of $n$-dimensional $\omega $-periodic vector functions with continuous and integrable on $[0,\omega ]$ components, respectively. Conditions which guarantee the existence of a unique $\omega $-periodic solution and continuous dependence of that solution on the right hand side of the system considered are established. (English)
Keyword: linear functional-differential system
Keyword: differential system with deviated argument
Keyword: $\omega$-periodic solution
MSC: 34C25
MSC: 34K05
MSC: 34K13
MSC: 34K15
idZBL: Zbl 0914.34062
idMR: MR1478773
.
Date available: 2008-06-06T21:33:22Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107611
.
Reference: [1] N.V. Azbelev, V.P. Maksimov and L.F. Rakhmatullina: Introduction to the Theory of Functional Differential Equations.(Russian) Nauka, Moscow, 1991. MR 1144998
Reference: [2] E.A. Coddington and N. Levinson: Theory of Ordinary Differential Equations.McGraw-Hill Book Company, Inc., New York Toronto London, 1955. MR 0069338
Reference: [3] J. Cronin: Periodic solutions of some nonlinear differential equations.J. Differential Equations 3 (1967), 31-46. Zbl 0153.12401, MR 0204770
Reference: [4] J.K. Hale: Periodic and almost periodic solutions of functional-differential equations.Arch. Rational Mech. Anal. 15 (1964), 289-304. Zbl 0129.06006, MR 0164096
Reference: [5] P. Hartman: Ordinary Differential Equations.John Wiley, New York, 1964. Zbl 1009.34001, MR 0171038
Reference: [6] A. Halanay: Optimal control of periodic solutions.Rev. Roumaine Math. Pures Appl. 19 (1974), 3-16. Zbl 0276.49012, MR 0344968
Reference: [7] G.S. Jones: Asymptotic fixed point theorems and periodic systems of functional-differential equations.Contr. Diff. Eqn 2 (1963), 385-405. Zbl 0131.13602, MR 0158135
Reference: [8] I.T. Kiguradze: On periodic solutions of systems of non-autonomous ordinary differential equations.(Russian) Mat. zametki 39 (1986), No.4, 562-575. MR 0842886
Reference: [9] I.T. Kiguradze: Boundary Value Problems for Systems of Ordinary Differential Equations.(Russian) Modern problems in mathematics. The latest achievements (Itogi Nauki i Tekhniki. VINITI Acad. Sci. USSR), Moscow, 1987, V.30, 3-103. Zbl 0956.34505, MR 0925829
Reference: [10] I.T. Kiguradze and B. Půža: On some boundary value problems for ordinary differential equation systems.(Russian) Diff. Uravnenija 12 (1976), No.12, 2139-2148. MR 0473302
Reference: [11] I.T. Kiguradze and B. Půža: On boundary value problems for systems of linear functional differential equations.Czech. Math. J. To appear.
Reference: [12] M.A. Krasnosel’skij: An alternative priciple for establishing the existence of periodic solutions of differential equations with a lagging argument.Soviet Math. Dokl. 4 (1963), 1412-1415.
Reference: [13] M.A. Krasnosel’skij: The theory of periodic solutions of non-autonomous differential equations.(Russian) Math. Surveys 21 (1966), 53-74.
Reference: [14] M.A. Krasnosel’skij: The Operator of Translation along the Trajectories of Differential Equations.(Russian) Nauka, Moscow, 1966.
Reference: [15] M.A. Krasnosel’skij and A.I. Perov: On a existence principle for bounded, periodic and almost periodic solutions of systems of ordinary differential equations.(Russian) Dokl. Akad. Nauk SSSR 123 (1958), 235-238. MR 0104870
Reference: [16] J. Kurzweil: Generalized ordinary differential equations and continuous dependence on a parameter.Czechoslovak Math. J. 7 (1957), 418-449. Zbl 0094.05902, MR 0111875
Reference: [17] J. Kurzweil and Z. Vorel: Continuous dependence of solutions of differential equations on a parameter.(Russian) Czechoslovak Math. J. 7 (1957), 568-583. MR 0111874
Reference: [18] J. Mawhin: Periodic Solutions of Nonlinear Functional Differential Equations.J. Diff. Equ. 10 (1971), 240-261. Zbl 0223.34055, MR 0294823
Reference: [19] Z. Opial: Continuous parameter dependence in linear systems of differential equations.J. Diff. Eqs. 3 (1967), 571-579. Zbl 0219.34004, MR 0216056
Reference: [20] T.A. Osechkina: Kriterion of unique solvability of periodic boundary value problem for functional differential equation.(Russian) Izv. VUZ. Matematika No. 10 (1994), 48-52. MR 1392339
Reference: [21] K. Schmitt: Periodic solutions of nonlinear differential systems.J. Math. Anal. and Appl. 40 (1972), No.1, 174-182. Zbl 0257.34044, MR 0313589
Reference: [22] æ. Schwabik, M. Tvrdì and O. Vejvoda: Differential and Integral Equations: Boundary Value Problems and Adjoints.Academia, Praha, 1979. MR 0542283
Reference: [23] S. Sedziwy: Periodic solutions of a system of nonlinear differential equations.Proc. Amer. Math. Soc. 48 (1975), No.8, 328-336. Zbl 0331.34039, MR 0357980
Reference: [24] Z. Vorel: Continuous dependence of parameters.Nonlinear Anal. Theory Meth. and Appl. 5 (1981), No.4, 373-380. MR 0611649
Reference: [25] T. Yoshizawa: Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions.Springer-Verlag, New York Heidelberg Berlin, 1975. Zbl 0304.34051, MR 0466797
.

Files

Files Size Format View
ArchMathRetro_033-1997-2_3.pdf 278.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo