Previous |  Up |  Next

Article

Title: Automorphisms of spatial curves (English)
Author: Bradáč, Ivan
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 33
Issue: 2
Year: 1997
Pages: 213-243
Summary lang: English
.
Category: math
.
Summary: Automorphisms of curves $y= y(x)$, $z=z(x)$ in ${\bold R}^3$ are investigated; i.e. invertible transformations, where the coordinates of the transformed curve $\bar y=\bar y(\bar x)$, $\bar z= \bar z(\bar x)$ depend on the derivatives of the original one up to some finite order $m$. While in the two-dimensional space the problem is completely resolved (the only possible transformations are the well-known contact transformations), the three-dimensional case proves to be much more complicated. Therefore, results (in the form of some systems of partial differential equations for the functions, determining the automorphisms) only for the special case $\bar x =x$ and order $m\leq 2$ are obtained. Finally, the problem of infinitesimal transformations is briefly mentioned. (English)
Keyword: automorphisms of curves
Keyword: infinite-dimensional space
Keyword: contact forms
MSC: 58A17
MSC: 58A20
MSC: 58J72
idZBL: Zbl 0915.58003
idMR: MR1478774
.
Date available: 2008-06-06T21:33:25Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107612
.
Reference: [1] Lie S.: Geometrie der Berührungstransformationen.erster Band, Leipzig 1896. Zbl 0406.01015
Reference: [2] Anderson R., Ibragimov N.: Lie-Bäcklund transformations in applications.Philadelphia 1979. Zbl 0447.58001, MR 0520395
Reference: [3] Ibragimov N.: Transformation groups in mathematical physics.Moscow, Nauka, 1983 (Russian) Zbl 0529.53014, MR 0734307
Reference: [4] Carathèodory C.: Variationsrechnung und partielle Differentialgleichungen erster Ordnung.Band I, Theorie der partielen Differentialgleichungen erster Ordnung, Zweite Auflage, Leipzig 1956. Zbl 0070.31601, MR 0089338
Reference: [5] Shlomo Sternberg: Lectures on Differential Geometry.Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 1965. MR 0193578
Reference: [6] Chrastina J.: From Elementary Algebra to Bäcklund Transformations.Czechoslovak Mathematical Journal, 40 (115) 1990, Praha. Zbl 0726.58041, MR 1046292
Reference: [7] Chrastina J.: Formal theory of differential equations.(to appear). Zbl 0906.35002, MR 1656843
Reference: [8] Chrastina J.: On the Equivalence of Variational Problems, I.Journal of Differential Equations, Vol. 98, No. 1, July 1992. Zbl 0764.49008, MR 1168972
Reference: [9] Stormark O.: Formal and local solvability of partial differential equations.Trita-Mat-1989-11, Mathematics, ch. 1–12, Royal Institute of Technology, Stockholm 1989.
Reference: [10] Pressley A., Segal G.: Loop Groups.Clarendon Press, Oxford 1986, Russian translation Moscow, Mir, 1990. Zbl 0618.22011, MR 1071737
Reference: [11] Cartan E.: Les systèmes différentiels extérieurs et leurs applications géometriques.Gauthier-Villars, Paris 1945, Russian translation Moscow University 1962. Zbl 0063.00734, MR 0016174
Reference: [12] Olver P.: Applications of Lie Groups to Differential Equations.1986, Springer-Verlag, Russian translation Moscow, Mir, 1989. Zbl 0743.58003, MR 0836734
Reference: [13] Vinogradov A. M., Krasilščik I. S., Lygačin V. V.: Introduction into the geometry of nonlinear differential equations.Moscow 1986 (Russian).
.

Files

Files Size Format View
ArchMathRetro_033-1997-2_4.pdf 347.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo