Previous |  Up |  Next

Article

Title: On periodic in the plane solutions of second order linear hyperbolic systems (English)
Author: Kiguradze, Tariel
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 33
Issue: 3
Year: 1997
Pages: 253-272
Summary lang: English
.
Category: math
.
Summary: Sufficient conditions for the problem \[ {\partial ^2 u\over \partial x\partial y}=P_0(x,y)u+ P_1(x,y){\partial u\over \partial x}+P_2(x,y){\partial u\over \partial y}+ q(x,y), u(x+\omega _1,y)=u(x,y),\quad u(x,y+\omega _2)=u(x,y) \] to have the Fredholm property and to be uniquely solvable are established, where $\omega _1$ and $\omega _2$ are positive constants and $P_j:R^2\rightarrow R^{n\times n}$ $(j=0,1,2)$ and $q:R^2\rightarrow R^n$ are continuous matrix and vector functions periodic in $x$ and $y$. (English)
Keyword: hyperbolic system
Keyword: periodic solution
Keyword: F property
MSC: 35B10
MSC: 35L10
MSC: 35L20
MSC: 35L55
idZBL: Zbl 0911.35067
idMR: MR1601317
.
Date available: 2008-06-06T21:33:32Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107615
.
Reference: [1] Aziz, A. K., Horak, M. G.: Periodic solutions of hyperbolic partial differential equations in the large.SIAM J. Math. Anal. 3 (1972), No. 1, 176-182. MR 0312043
Reference: [2] Cesari, L.: Existence in the large of periodic solutions of hyperbolic partial differential equations.Arch. Rational Mech. Anal. 20 (1965), 170-190. Zbl 0154.35902, MR 0183976
Reference: [3] Cesari, L.: Periodic solutions of nonlinear hyperbolic differential equations.Coll. Inter. Centre Nat. Rech. Sci. 148 (1965), 425-437.
Reference: [4] Cesari, L.: Smoothness properties of periodic solutions in the large of nonlinear hyperbolic differential systems.Funkcial. Ekvac. 9 (1966), 325-338. Zbl 0154.35903, MR 0212343
Reference: [5] Hale, J. K.: Periodic solutions of a class of hyperbolic equations containing a smalls parameter.Arch. Rat. Mech. Anal. 23 (1967), No. 5, 380-398. MR 0206503
Reference: [6] Hartman, P.: Ordinary differential equations..John Wiley & Sons, New York-London-Sydney, 1964. Zbl 1009.34001, MR 0171038
Reference: [7] Kiguradze, T. I.: On the periodic boundary value problems for linear hyperbolic equations I. (Russian).Differentsial’nye Uravneniya 29 (1993), No. 2, 281-297. MR 1236111
Reference: [8] Kiguradze, T. I.: On the periodic boundary value problems for linear hyperbolic equations II. (Russian).Differentsial’nye Uravneniya 29 (1993), No. 4, 637-645. MR 1250721
Reference: [9] Kiguradze, T. I.: Some boundary value problems for systems of linear partial differential equations of hyperbolic type.Memoirs on Differential Equations and Mathematical Physics 1 (1994), 1-144. Zbl 0819.35003, MR 1296228
Reference: [10] Kiguradze, T. I.: On bounded in a strip solutions of the hyperbolic partial differential equations.Applicable Analysis 58 (1995), 199-214. MR 1383188
Reference: [11] Kolmogorov, A. N., Fomin, S. V.: Elements of theory of functions and functional analysis (Russian).Nauka, Moscow, 1989. MR 1025126
Reference: [12] Lusternik, L. A., Sobolev, V. I.: Elements of functional analysis (Russian).Nauka, Moscow, 1965. MR 0209802
Reference: [13] Lakshmikantham, V., Pandit, S. G.: Periodic solutions of hyperbolic partial differential equations.Comput. and Math. 11 (1985), No. 1-3, 249-259. MR 0787440
Reference: [14] Liu Baoping: The integral operator method for finding almost-periodic solutions of nonlinear wave equations.Nonlinear Anal. TMA 11 (1987), No. 5, 553-564. Zbl 0666.35005, MR 0886648
Reference: [15] Žestkov, S. V.: On twice periodic solutions of quasilinear hyperbolic systems.Differentsial’nye Uravnenia 24 (1988), No. 12, 2164-2166.
.

Files

Files Size Format View
ArchMathRetro_033-1997-3_1.pdf 303.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo