Title:
|
On a generalized Wiener-Hopf integral equation (English) |
Author:
|
McGregor, Malcolm T. |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
33 |
Issue:
|
3 |
Year:
|
1997 |
Pages:
|
273-278 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $\alpha $ be such that $0<\alpha <\frac{1}{2}$. In this note we use the Mittag-Leffler partial fractions expansion for $F_\alpha (\theta )=\Gamma \left(1-\alpha -\frac{\theta }{\pi }\right) \Gamma (\alpha )/ \Gamma \left( \alpha -\frac{\theta }{\pi }\right) \Gamma (1-\alpha )$ to obtain a solution of a Wiener-Hopf integral equation. (English) |
Keyword:
|
Wiener-Hopf integral equation |
MSC:
|
45E10 |
idZBL:
|
Zbl 0912.45003 |
idMR:
|
MR1601321 |
. |
Date available:
|
2008-06-06T21:33:35Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/107616 |
. |
Reference:
|
[1] Feller, W.: An Introduction to Probability Theory and Its Applications.Vol. II, John Wiley & Sons, New York, 1966. Zbl 0598.60003, MR 0210154 |
Reference:
|
[2] McGregor, M. T.: On a Wiener-Hopf integral equation.J. Integral Eqns. & Applns. (4)7 (1995), 475-483. Zbl 0849.45001, MR 1382065 |
Reference:
|
[3] Noble, B.: The Wiener-Hopf Technique.Pergamon Press, New York, 1958. Zbl 0657.35001, MR 0102719 |
. |