Previous |  Up |  Next

Article

Title: On a generalized Wiener-Hopf integral equation (English)
Author: McGregor, Malcolm T.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 33
Issue: 3
Year: 1997
Pages: 273-278
Summary lang: English
.
Category: math
.
Summary: Let $\alpha $ be such that $0<\alpha <\frac{1}{2}$. In this note we use the Mittag-Leffler partial fractions expansion for $F_\alpha (\theta )=\Gamma \left(1-\alpha -\frac{\theta }{\pi }\right) \Gamma (\alpha )/ \Gamma \left( \alpha -\frac{\theta }{\pi }\right) \Gamma (1-\alpha )$ to obtain a solution of a Wiener-Hopf integral equation. (English)
Keyword: Wiener-Hopf integral equation
MSC: 45E10
idZBL: Zbl 0912.45003
idMR: MR1601321
.
Date available: 2008-06-06T21:33:35Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107616
.
Reference: [1] Feller, W.: An Introduction to Probability Theory and Its Applications.Vol. II, John Wiley & Sons, New York, 1966. Zbl 0598.60003, MR 0210154
Reference: [2] McGregor, M. T.: On a Wiener-Hopf integral equation.J. Integral Eqns. & Applns. (4)7 (1995), 475-483. Zbl 0849.45001, MR 1382065
Reference: [3] Noble, B.: The Wiener-Hopf Technique.Pergamon Press, New York, 1958. Zbl 0657.35001, MR 0102719
.

Files

Files Size Format View
ArchMathRetro_033-1997-3_2.pdf 204.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo