Previous |  Up |  Next

Article

Title: A multiplication of e-varieties of regular $E$-solid semigroups by inverse semigroup varieties (English)
Author: Kuřil, Martin
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 33
Issue: 3
Year: 1997
Pages: 279-299
Summary lang: English
.
Category: math
.
Summary: A multiplication of e-varieties of regular $E$-solid semigroups by inverse semigroup varieties is described both semantically and syntactically. The associativity of the multiplication is also proved. (English)
Keyword: regular semigroup
Keyword: inverse semigroup
Keyword: e-variety
Keyword: biinvariant congruence
Keyword: bifree object
MSC: 08B15
MSC: 20M07
MSC: 20M17
MSC: 20M18
idZBL: Zbl 0913.20037
idMR: MR1601325
.
Date available: 2008-06-06T21:33:38Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107617
.
Reference: [1] Billhardt B.: On a wreath product embedding and idempotent pure congruences on inverse semigroups.Semigroup Forum 45 (1992), 45–54. Zbl 0769.20027, MR 1161418
Reference: [2] Hall T. E.: Congruences and Green’s relations on regular semigroups.Glasgow Math. J. 13 (1972), 167–175. MR 0318356
Reference: [3] Hall T. E.: Identities for existence varieties of regular semigroups.Bull. Austral. Math. Soc. 40 (1989), 59–77. Zbl 0666.20028, MR 1020841
Reference: [4] Howie J. M.: An Introduction to Semigroup Theory.Academic Press, London, 1976. Zbl 0355.20056, MR 0466355
Reference: [5] Kaďourek J., Szendrei M. B.: A new approach in the theory of orthodox semigroups.Semigroup Forum 40 (1990), 257–296. Zbl 0705.20052, MR 1038007
Reference: [6] Kaďourek J., Szendrei M. B.: On existence varieties of $E$-solid semigroups.preprint. Zbl 0931.20049, MR 1847661
Reference: [7] Kuřil M.: A multiplication of e-varieties of orthodox semigroups.Arch. Math. (Brno) 31 (1995), 43–54. Zbl 0836.20084, MR 1342374
.

Files

Files Size Format View
ArchMathRetro_033-1997-3_3.pdf 283.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo