Previous |  Up |  Next

Article

Title: Oscillation of a second order delay differential equations (English)
Author: Džurina, Jozef
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 33
Issue: 3
Year: 1997
Pages: 309-314
Summary lang: English
.
Category: math
.
Summary: In this paper, we study the oscillatory behavior of the solutions of the delay differential equation of the form \[ \left(\frac{1}{r(t)}y^{\prime }(t)\right)^{\prime }+p(t)y(\tau (t))= 0. \] The obtained results are applied to n-th order delay differential equation with quasi-derivatives of the form \[ L_nu(t)+p(t)u(\tau (t))=0. \] (English)
Keyword: oscillation
Keyword: quasi-derivatives
Keyword: delayed argument...
MSC: 34C10
MSC: 34K11
MSC: 34K15
idZBL: Zbl 0915.34062
idMR: MR1601333
.
Date available: 2008-06-06T21:34:18Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107619
.
Reference: [1] Chanturija, T. A., Kiguradze, I. T.: Asymptotic properties of nonautonomous ordinary differential equations.Nauka, Moscow, 1990. (Russian)
Reference: [2] Džurina, J.: The oscillation of a differential equation of second order with deviating argument.Math. Slovaca 42 (1992), 317–324. MR 1182961
Reference: [3] Džurina, J.: Comparison theorems for nonlinear ordinary differential equations.Mat. Slovaca 42 (1992), 299–315. MR 1182960
Reference: [4] Erbe, L.: Oscillation criteria for second order nonlinear delay equation.Canad. Math. Bull 16 (1973), 49–56. MR 0324173
Reference: [5] Hartmann, P.: Ordinary differential equations.John Willey & Sons, New York–London–Sydney, 1964. MR 0171038
Reference: [6] Hille, E.: Non-oscillation theorems.Trans.Amer.Math.Soc. 64 (1948), 234–258. Zbl 0031.35402, MR 0027925
Reference: [7] Ladde, G. S., Lakshmikhantam, V., Zhang, B. G.: Oscillation theory of differential equations with deviating arguments.Dekker, New York, 1987. MR 1017244
Reference: [8] Kusano, T., Naito, M.: Oscillation criteria for general linear ordinary differential equations.Pacific J. Math. 92 (1981), 345–355. MR 0618070
Reference: [9] Kusano, T., Naito, M.: Comparison theorems for functional differential equations with deviating arguments.J. Math. Soc. Japan 3 (1981), 509–532. MR 0620288
Reference: [10] Ohriska, J.: On the oscillation of a linear differential equation of second order.Czech. Math. J. 39 (1989), 16–23. Zbl 0673.34043, MR 0983480
Reference: [11] Ohriska, J.: Oscillation of second order delay and ordinary differential equations.Czech. Math. J. 34 (1984), 107–112. MR 0731983
Reference: [12] Swanson, C. A.: Comparison and oscillation theory of linear differential equations.Acad. Press, New York-London, 1968. Zbl 0191.09904, MR 0463570
Reference: [13] Shevelo, V. N., Varech, N. V.: On certain properties of solutions of differential equations with a delay.UMŽ 24 (1972). (Ukrainian)
Reference: [14] Tanaka, K.: Asymptotic analysis of odd order ordinary differential equations.Hiroshima Math. J. 10 (1980), 391–408. Zbl 0453.34033, MR 0577867
Reference: [15] Trench, W. F.: Canonical forms and principal systems for general disconjugate equations.Trans. Amer. Math.Soc 189 (1974), 319–327. Zbl 0289.34051, MR 0330632
.

Files

Files Size Format View
ArchMathRetro_033-1997-3_5.pdf 217.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo