Title:
|
Commutativity of associative rings through a Streb's classification (English) |
Author:
|
Ashraf, Mohammad |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
33 |
Issue:
|
3 |
Year:
|
1997 |
Pages:
|
315-321 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $m \geq 0, ~r \geq 0, ~s \geq 0, ~q \geq 0$ be fixed integers. Suppose that $R$ is an associative ring with unity $1$ in which for each $x,y \in R$
there exist polynomials $f(X) \in X^{2} \mbox{$Z \hspace{-2.2mm} Z$}[X], ~g(X), ~h(X) \in X \mbox{$Z \hspace{-2.2mm} Z$}[X]$ such that $\{ 1-g (yx^{m}) \} [x, ~x^{r}y ~-~ x^{s}f (y x^{m}) x^{q}] \{ 1-h(yx^{m}) \} ~=~ 0$. Then $R$ is commutative. Further, result is extended to the case when the integral exponents in the above property depend on the choice of $x$ and $y$. Finally, commutativity of one sided s-unital ring is also obtained when $R$ satisfies some related ring properties. (English) |
Keyword:
|
factorsubring |
Keyword:
|
s-unital ring |
Keyword:
|
commutativity |
Keyword:
|
commutator |
Keyword:
|
associative ring |
MSC:
|
16U70 |
MSC:
|
16U80 |
idZBL:
|
Zbl 0913.16017 |
idMR:
|
MR1601337 |
. |
Date available:
|
2008-06-06T21:34:22Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/107620 |
. |
Reference:
|
[1] Abujabal H. A. S., Ashraf M.: Some commutativity theorems through a Streb’s classification.Note Mat. 14, No.1 (1994) (to appear). Zbl 0879.16019, MR 1442008 |
Reference:
|
[2] Ashraf M.: On commutativity of one sided s-unital rings with some polynomial constraints.Indian J. Pure and Appl. Math. 25 (1994), 963-967. Zbl 0814.16030, MR 1294065 |
Reference:
|
[3] Bell H. E., Quadri M. A., Khan M. A.: Two commutativity theorems for rings.Rad. Mat. 3 (1994), 255-260. MR 0931981 |
Reference:
|
[4] Bell H. E., Quadri M. A., Ashraf M.: Commutativity of rings with some commutator constraints.Rad. Mat. 5 (1989), 223-230. Zbl 0697.16031, MR 1050891 |
Reference:
|
[5] Chacron M.: A commutativity theorem for rings.Proc. Amer. Math. Soc., 59 (1976), 211-216. Zbl 0341.16020, MR 0414636 |
Reference:
|
[6] Herstein I. N.: Two remakrs on commutativity of rings.Canad. J. Math. 7 (1955), 411-412. MR 0071405 |
Reference:
|
[7] Hirano Y., Kobayashi Y., Tominaga H.: Some polynomial identities and commutativity of s-unital rings.Math. J. Okayama Univ. 24 (1982), 7-13. Zbl 0487.16023, MR 0660049 |
Reference:
|
[8] Jacobson N.: Structure theory of algebraic algebras of bounded degree.Ann. Math. 46 (1945), 695-707. MR 0014083 |
Reference:
|
[9] Komatsu H., Tominaga H.: Chacron’s conditions and commutativity theorems.Math. J. Okayama Univ. 31 (1989), 101-120. MR 1043353 |
Reference:
|
[10] Komatsu H., Tominaga H.: Some commutativity theorems for left s-unital rings.Resultate Math. 15 (1989), 335-342. Zbl 0678.16027, MR 0997069 |
Reference:
|
[11] Komatsu H., Tominaga H.: Some commutativity conditions for rings with unity.Resultate Math. 19 (1991), 83-88. Zbl 0776.16017, MR 1091958 |
Reference:
|
[12] Komatsu H., Nishinaka T., Tominaga H.: On commutativity of rings.Rad. Math. 6 (1990), 303-311. Zbl 0718.16031, MR 1096712 |
Reference:
|
[13] Putcha M. S., Yaqub A.: Rings satisfying polynomial constraints.J. Math. Soc., Japan 25 (1973), 115-124. Zbl 0242.16017, MR 0313312 |
Reference:
|
[14] Quadri M. A., Ashraf M., Khan M. A.: A commutativity condition for semiprime ring-II.Bull. Austral. Math. Soc. 33 (1986), 71-73. MR 0823854 |
Reference:
|
[15] Quadri M. A., Ashraf M.: Commutativity of generalized Boolean rings.Publ. Math. (Debrecen) 35 (1988), 73-75. Zbl 0657.16020, MR 0971954 |
Reference:
|
[16] Quadri M. A., Khan M. A., Asma Ali: A commutativity theorem for rings with unity.Soochow J. Math. 15 (1989), 217-227. MR 1045165 |
Reference:
|
[17] Searcoid M. O., MacHale D.: Two elementary generalizations for Boolean rings.Amer. Math. Monthly 93 (1986), 121-122. MR 0827587 |
Reference:
|
[18] Streb W.: Zur struktur nichtkommutativer Ringe.Math. J. Okayama Univ. 31 (1989), 135-140. Zbl 0702.16022, MR 1043356 |
Reference:
|
[19] Tominaga H., Yaqub A.: Commutativity theorems for rings with constraints involving a commutative subset.Resultate Math. 11 (1987), 186-192. MR 0880201 |
. |