Full entry |
PDF
(0.2 MB)
Feedback

functional boundary conditions; functional differential equation; existence; multiplicity; Bihari lemma; homotopy; Leray Schauder degree; Borsuk theorem

References:

[1] Ambrosetti A., Prodi G.: **On the inversion of some differentiable mappings with singularities between Banach spaces**. Ann. Mat. Pura Appl. 93, 1972, 231–247. MR 0320844 | Zbl 0288.35020

[2] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F.: **Introduction to the Theory of Functional Differential Equations**. Moscow, Nauka, 1991 (in Russian). MR 1144998 | Zbl 0725.34071

[3] Bihari I.: **A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations**. Acta Math. Sci. Hungar. 7, 1956, 71–94. MR 0079154 | Zbl 0070.08201

[4] Brüll L., Mawhin J.: **Finiteness of the set of solutions of some boundary- value problems for ordinary differential equations**. Arch. Math. (Brno) 24, 1988, 163–172. MR 0983234 | Zbl 0678.34023

[5] Brykalov S. A.: **Solvability of a nonlinear boundary value problem in a fixed set of functions**. Diff. Urav. 27, 1991, 2027–2033 (in Russian). MR 1155041 | Zbl 0788.34070

[6] Brykalov S. A.: **Solutions with given maximum and minimum**. Diff. Urav. 29, 1993, 938–942 (in Russian). MR 1254551

[7] Brykalov S. A.: **A second-order nonlinear problem with two-point and integral boundary conditions**. Proceedings of the Georgian Academy of Science, Math. 1, 1993, 273–279. MR 1262564 | Zbl 0798.34021

[8] Deimling K.: **Nonlinear Functional Analysis**. Springer, Berlin Heidelberg 1985. MR 0787404 | Zbl 0559.47040

[9] Ermens B., Mawhin J.: **Higher order nonlinear boundary value problems with finitely many solutions**. Séminaire Mathématique, Université de Louvain, No. 139, 1988, 1–14, (preprint). MR 1065638

[10] Filatov A. N., Sharova L. V.: **Integral Inequalities and the Theory of Nonlinear Oscillations**. Nauka, Moscow 1976 (in Russian). MR 0492576 | Zbl 0463.34001

[11] Mawhin J.: **Topological Degree Method in Nonlinear Boundary Value Problems**. CMBS Reg. Conf. in Math., No. 40, AMS, Providence, 1979. MR 0525202

[12] Mawhin J., Willem M.: **Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations**. J. Differential Equations 52, 1984, 264–287. MR 0741271 | Zbl 0557.34036

[13] Nkashama M. N., Santanilla J.: **Existence of multiple solutions for some nonlinear boundary value problems**. J. Differential Equations 84, 1990, 148–164. MR 1042663 | Zbl 0693.34011

[14] Rachůnková I., Staněk S.: **Topological degree method in functional boundary value problems**. Nonlinear Analysis 27, 1996, 153–166.

[15] Rachůnková I.: **On the existence of two solutions of the periodic problem for the ordinary second-order differential equation**. Nonlinear Analysis 22, 1994, 1315–1322. Zbl 0808.34023

[16] Staněk S.: **Existence of multiple solutions for some functional boundary value problems**. Arch. Math. (Brno) 28, 1992, 57–65. MR 1201866 | Zbl 0782.34074

[17] Staněk S.: **Multiple solutions for some functional boundary value problems**. Nonlinear Analysis, to appear. MR 1610598 | Zbl 0945.34049

[18] Staněk S.: **Multiplicity results for second order nonlinear problems with maximum and minimum**. Math. Nachr., to appear. MR 1626344 | Zbl 0920.34058

[19] Šeda V.: **Fredholm mappings and the generalized boundary value problem**. Differential and Integral Equations 8, 1995, 19–40. MR 1296108