Previous |  Up |  Next

Article

Title: On a criterion for the existence of at least four solutions of functional boundary value problems (English)
Author: Staněk, Svatoslav
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 33
Issue: 3
Year: 1997
Pages: 335-348
Summary lang: English
.
Category: math
.
Summary: A class of functional boundary conditions for the second order functional differential equation $x''(t)=(Fx)(t)$ is introduced. Here $F:C^1(J) \rightarrow L_1(J)$ is a nonlinear continuous unbounded operator. Sufficient conditions for the existence of at least four solutions are given. The proofs are based on the Bihari lemma, the topological method of homotopy, the Leray-Schauder degree and the Borsuk theorem. (English)
Keyword: functional boundary conditions
Keyword: functional differential equation
Keyword: existence
Keyword: multiplicity
Keyword: Bihari lemma
Keyword: homotopy
Keyword: Leray Schauder degree
Keyword: Borsuk theorem
MSC: 47H15
MSC: 47N20
idZBL: Zbl 0914.34063
idMR: MR1601341
.
Date available: 2008-06-06T21:34:36Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107622
.
Reference: [1] Ambrosetti A., Prodi G.: On the inversion of some differentiable mappings with singularities between Banach spaces.Ann. Mat. Pura Appl. 93, 1972, 231–247. Zbl 0288.35020, MR 0320844
Reference: [2] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F.: Introduction to the Theory of Functional Differential Equations.Moscow, Nauka, 1991 (in Russian). Zbl 0725.34071, MR 1144998
Reference: [3] Bihari I.: A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations.Acta Math. Sci. Hungar. 7, 1956, 71–94. Zbl 0070.08201, MR 0079154
Reference: [4] Brüll L., Mawhin J.: Finiteness of the set of solutions of some boundary- value problems for ordinary differential equations.Arch. Math. (Brno) 24, 1988, 163–172. Zbl 0678.34023, MR 0983234
Reference: [5] Brykalov S. A.: Solvability of a nonlinear boundary value problem in a fixed set of functions.Diff. Urav. 27, 1991, 2027–2033 (in Russian). Zbl 0788.34070, MR 1155041
Reference: [6] Brykalov S. A.: Solutions with given maximum and minimum.Diff. Urav. 29, 1993, 938–942 (in Russian). MR 1254551
Reference: [7] Brykalov S. A.: A second-order nonlinear problem with two-point and integral boundary conditions.Proceedings of the Georgian Academy of Science, Math. 1, 1993, 273–279. Zbl 0798.34021, MR 1262564
Reference: [8] Deimling K.: Nonlinear Functional Analysis.Springer, Berlin Heidelberg 1985. Zbl 0559.47040, MR 0787404
Reference: [9] Ermens B., Mawhin J.: Higher order nonlinear boundary value problems with finitely many solutions.Séminaire Mathématique, Université de Louvain, No. 139, 1988, 1–14, (preprint). MR 1065638
Reference: [10] Filatov A. N., Sharova L. V.: Integral Inequalities and the Theory of Nonlinear Oscillations.Nauka, Moscow 1976 (in Russian). Zbl 0463.34001, MR 0492576
Reference: [11] Mawhin J.: Topological Degree Method in Nonlinear Boundary Value Problems.CMBS Reg. Conf. in Math., No. 40, AMS, Providence, 1979. MR 0525202
Reference: [12] Mawhin J., Willem M.: Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations.J. Differential Equations 52, 1984, 264–287. Zbl 0557.34036, MR 0741271
Reference: [13] Nkashama M. N., Santanilla J.: Existence of multiple solutions for some nonlinear boundary value problems.J. Differential Equations 84, 1990, 148–164. Zbl 0693.34011, MR 1042663
Reference: [14] Rachůnková I., Staněk S.: Topological degree method in functional boundary value problems.Nonlinear Analysis 27, 1996, 153–166.
Reference: [15] Rachůnková I.: On the existence of two solutions of the periodic problem for the ordinary second-order differential equation.Nonlinear Analysis 22, 1994, 1315–1322. Zbl 0808.34023
Reference: [16] Staněk S.: Existence of multiple solutions for some functional boundary value problems.Arch. Math. (Brno) 28, 1992, 57–65. Zbl 0782.34074, MR 1201866
Reference: [17] Staněk S.: Multiple solutions for some functional boundary value problems.Nonlinear Analysis, to appear. Zbl 0945.34049, MR 1610598
Reference: [18] Staněk S.: Multiplicity results for second order nonlinear problems with maximum and minimum.Math. Nachr., to appear. Zbl 0920.34058, MR 1626344
Reference: [19] Šeda V.: Fredholm mappings and the generalized boundary value problem.Differential and Integral Equations 8, 1995, 19–40. MR 1296108
.

Files

Files Size Format View
ArchMathRetro_033-1997-3_8.pdf 297.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo