Previous |  Up |  Next

Article

Title: Second order multivalued boundary value problems (English)
Author: Halidias, Nikolaos
Author: Papageorgiou, Nikolaos S.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 34
Issue: 2
Year: 1998
Pages: 267-284
.
Category: math
.
MSC: 34A60
MSC: 34B15
MSC: 34B24
MSC: 34C25
idZBL: Zbl 0915.34021
idMR: MR1645320
.
Date available: 2009-02-17T10:11:59Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107652
.
Reference: [1] Bernfeld S., Lakshmikantham V.: An Introduction to Nonlinear Boundary Value Problems.Academic Press, New York (1974). Zbl 0286.34018, MR 0445048
Reference: [2] Bressan A., Colombo G.: Extensions and selections of maps with decomposable values.Studia Math. 90 (1988), 69–85. Zbl 0677.54013, MR 0947921
Reference: [3] Brezis H.: Analyse Fonctionelle.Masson, Paris (1983). MR 0697382
Reference: [4] Cabada A., Nieto J.: Extremal solutions of second order nonlinear boundary value problems.Appl. Math. Comp. 40 (1990), 135–145. MR 1080229
Reference: [5] Chang K. C. : The obstacle problem and partial differential equations with discontinuous nonlinearities.Comm. Pure Appl. Math. 33 (1980), 117–146. Zbl 0405.35074, MR 0562547
Reference: [6] DeBlasi F. S., Myjak J.: On continuous approximations for multifunctions.Pacific J. Math. 123 (1986), 9–31. MR 0834135
Reference: [7] Dunford N., Schwartz J.: Linear Operators I.Wiley, New York (1958).
Reference: [8] Erbe L., Krawcewicz W.: Boundary value problems for differential inclusions $y^{^{\prime \prime }}\in F\left(t,y,y^{^{\prime }}\right)$.Annales Polon Math. 56 (1990), 195–226. MR 1114171
Reference: [9] Gaines R., Mawhin J.: Coincidence Degree and Nonlinear Differential Equations.Springer Verlag, Berlin (1977). Zbl 0339.47031, MR 0637067
Reference: [10] Gao W., Wang J.: On nonlinear second order periodic boundary value problem with Caratheodory functions.Annales Polon Math. 62 (1995), 283–291. MR 1356797
Reference: [11] Gilbarg D., Trudinger N.: Elliptic Partial Differential Equations of Second Order.Springer Verlag, New York (1977). Zbl 0361.35003, MR 0473443
Reference: [12] Himmelberg C.: Fixed points of compact multifunctions.J. Math. Anal. Appl. 38 (1972). Zbl 0225.54049, MR 0303368
Reference: [13] Kandilakis D., Papageorgiou N. S.: Dirichlet and periodic problems for second order differential inclusions.Houston J. Math. – to appear.
Reference: [14] Klein E., Thompson A.: Theory of Correspondences.Wiley, New York (1984). Zbl 0556.28012, MR 0752692
Reference: [15] Kravvaritis D., Papageorgiou N. S.: Boundary value problems for nonconvex differential inclusions.J. Math. Anal. Appl. 185 (1994), 146–160. Zbl 0817.34009, MR 1283047
Reference: [16] Leela S.: Monotone method for second order periodic boundary value problems.Nonl. Anal. – TMA 7 (1983), 349–355. Zbl 0524.34023, MR 0696734
Reference: [17] Marano S.: Existence theorems for multivalued boundary value problems.Bull. Austr. Math. Soc. 45 (1992), 249–260. MR 1155483
Reference: [18] Mönch H.: Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces.Nonl. Anal. – TMA 4 (1980), 985–999. MR 0586861
Reference: [19] Nieto J.: Nonlinear second order periodic value problems with Caratheodory functions.Appl. Anal. 34 (1989), 111–128.
Reference: [20] Nieto J., Cabada A.: A generalized upper and lower solutions method for nonlinear second order ordinary differential equations.J. Appl. Math. Stoch. Anal. 5 (1992), 157–166. Zbl 0817.34016, MR 1214298
Reference: [21] Nkashama M. N.: A generalized upper and lower solutions method and multiplicity results for nonlinear first–order ordinary differential equations.J. Math. Anal. Appl. 140 (1989), 381–395. Zbl 0674.34009, MR 1001864
Reference: [22] Omari P.: A monotone method for constructing extremal solutions of second order scalar boundary value problems.Appl. Math. Comp. 18 (1986), 257–275. Zbl 0625.65075, MR 0827837
Reference: [23] Omari P., Trombetta M.: Remarks on the lower and upper solutions method for second and third order periodic boundary value problems.Appl. Math. Comp. 50 (1992), 1–21. Zbl 0760.65078, MR 1164490
Reference: [24] Papageorgiou N. S.: Convergence theorems for Banach space valued integrable multifunctions.Intern. J. Math.. Sci. 10 10 (1987), 433–442. Zbl 0619.28009, MR 0896595
Reference: [25] Papageorgiou N. S.: On measurable multifunctions with applications to multivalued equations.Math. Japonica 32 (1987), 437–464. MR 0914749
Reference: [26] Papageorgiou N. S. : Decomposable sets in the Lebesgue–Bochner spaces.Comm. Math. Univ. Sancti Pauli 37 (1988), pp. 49–62. Zbl 0679.46032, MR 0942305
Reference: [27] Papageorgiou N. S., Papalini F.: Periodic and boundary value problems for second order differential equations.Trans. AMS – to appear. Zbl 0986.34011, MR 1818423
Reference: [28] Vrabie I.: Compactness Methods for Nonlinear Evolutions.Longman Scientific and Technical, Essex, U.K. (1987). Zbl 0721.47050, MR 0932730
Reference: [29] Wagner D.: Survey of measurable selection theorems.SIAM J. Control Optim. 15 (1977), 859–903. Zbl 0407.28006, MR 0486391
.

Files

Files Size Format View
ArchMathRetro_034-1998-2_5.pdf 283.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo