Previous |  Up |  Next

Article

Title: On skew 2-projectable almost complex structures on $TM$ (English)
Author: Dekrét, Anton
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 34
Issue: 2
Year: 1998
Pages: 285-293
Summary lang: English
.
Category: math
.
Summary: We deal with a $(1, 1)$-tensor field $\alpha $ on the tangent bundle $TM$ preserving vertical vectors and such that $J\alpha =-\alpha J$ is a $(1, 1)$-tensor field on $M$, where $J$ is the canonical almost tangent structure on $TM$. A connection $\Gamma _{\alpha }$ on $TM$ is constructed by $\alpha $. It is shown that if $\alpha $ is a $VB$-almost complex structure on $TM$ without torsion then $\Gamma _{\alpha }$ is a unique linear symmetric connection such that $\alpha (\Gamma _{\alpha })=\Gamma _{\alpha }$ and $\nabla _{\Gamma _{\alpha }} (J\alpha ) =0$. (English)
Keyword: tangent bundle
Keyword: skew 2-projectable
Keyword: $(1, 1)$-vector fields
Keyword: almost complex structure
Keyword: connection
MSC: 53C05
MSC: 53C15
MSC: 58A20
idZBL: Zbl 0910.53020
idMR: MR1645324
.
Date available: 2009-02-17T10:12:04Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107653
.
Reference: [1] Cabras, A., Kolář, I.: Special tangent valued forms and the Frölicher-Nijenhuis bracket.Arch. Mathematicum (Brno) Tom. 29 (1993), 71–82. MR 1242630
Reference: [2] Dekrét, A.: Almost complex structures and connections on $TM$.Proc. Conf. Differential Geometry and Applications, Masaryk Univ. Brno (1996), 133–140. MR 1406333
Reference: [3] Gancarzewicz, J., Mikulski, W., Pogula, Z.: Lifts of some tensor fields and connections to product preserving functors.Nagoya Math. Journal 135 (September 1994), 1–41. MR 1295815
Reference: [4] Griffone, J.: Structure presque-tangent et connections I..Ann. Inst. Gourier (Grenoble) 22 (1972), 287–334. MR 0336636
Reference: [5] Janyška, J.: Remarks on the Nijenhuis tensor and almost comples connections.Arch. Math. (Brno) 26 No. 4 (1990), 229–240. MR 1188975
Reference: [6] Kobayashi, S., Nomizu, K.: Foundations of differential geometry II..Interscience publishers, 1969.
Reference: [7] Kolář, I., Michor, P.W., Slovák, J.: Natural operations in differential geometry.Springer-Verlag, 1993. MR 1202431
Reference: [8] Yano, K., Ishihara, S.: Tangent and cotangent bundles.M. Dekker Inc. New York, 1973. MR 0350650
Reference: [9] Yano, K.: Differential geometry on complex and almost complex spaces.Pergamon Press, New York, 1965. Zbl 0127.12405, MR 0187181
.

Files

Files Size Format View
ArchMathRetro_034-1998-2_6.pdf 261.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo