Previous |  Up |  Next

Article

Title: Lower-dimensional decompositions using complex variables (English)
Author: Tutschke, Wolfgang
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 34
Issue: 3
Year: 1998
Pages: 329-336
Summary lang: English
.
Category: math
.
Summary: The purpose of the present paper is to represent non-holomorphic functions depending on one or several complex variables by holomorphic and anti-holomorphic functions depending on only one complex variable. Similarly as in the case of functions of real variables, the obtained criteria can also be interpreted as conditions for the solvability of functional equations. (English)
Keyword: holomorphic solution of functional equations
Keyword: poly-analytic functions
Keyword: ordinary differential equations in the complex domain
MSC: 30D05
MSC: 30G20
MSC: 39B32
idZBL: Zbl 0970.39019
idMR: MR1662111
.
Date available: 2009-02-17T10:14:12Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107659
.
Reference: [1] Balk M. B.: Polyanalytic functions.Akademie-Verlag Berlin 1991. Zbl 0864.30035, MR 1184141
Reference: [2] Čadek M., Šimša J.: Decomposable functions of several variables.Aequat. Mathem., vol.40, 1990, 8-25. MR 1055187
Reference: [3] Čadek M., Šimša J.: Decompositions of smooth functions of two multidimensional variables.Czechoslovak Mathem. Journ., vol. 41 (116) 1991, 342-358. MR 1105450
Reference: [4] Gauchman H., Rubel L. A.: Sums of products of functions of $x$ times functions of $y$.Linear Algebra Appl., vol. 125, 1989, 19-63. Zbl 0695.26007, MR 1024482
Reference: [5] Herold H.: Differentialgleichungen im Komplexen.Göttingen 1975. Zbl 0323.34003, MR 0470293
Reference: [6] Hörmander L.: Introduction to Complex Analysis in Several Variables. Zbl 0685.32001
Reference: [7] Neuman F.: Functions of two variables and matrices involving factorizations.C. R. Math. Rep. Acad. Sci. Canada, vol. 3, 1981, 7-11. Zbl 0449.15009, MR 0608675
Reference: [8] Neuman F.: Factorizations of matrices and functions of two variables.Czechoslovak Math. Journ., vol. 32, 1982, 582-588. Zbl 0517.15012, MR 0682133
Reference: [9] Neuman F.: Finite sums of products of functions in single variables.Linear Algebra Appl., vol. 134, 1990, 153-164. Zbl 0714.26007, MR 1060018
Reference: [10] Neuman F., Rassias, Th. M.: Functions decomposable into finite sums of products (old and new results, problems and trends).Contained in the volume Constantin Caratheodory: An International Tribute (ed. by Th. M. Rassias), 956-963, World Scientific Publ. Co. 1991. Zbl 0738.26003, MR 1130873
Reference: [11] Rassias, Th. M., Šimša J.: Finite sums decompositions in Mathematical Analysis.Wiley, Chichester 1995. Zbl 0859.26005, MR 1339768
Reference: [12] Schwartz L.: Théorie des distributions.Tome I, Paris 1957. Zbl 0089.09601
Reference: [13] Šimša J.: Some factorizations of matrix functions in several variables.Arch. Math.(Brno), vol. 28, 1994, 85-94. MR 1201870
Reference: [14] Tutschke W.: Partielle Differentialgleichungen. Klassische, funktionalanalytische und komplexe Methoden.Teubner-Text Bd. 27, Leipzig 1983. Zbl 0545.35001, MR 0730943
Reference: [15] Tutschke W., Withalm C.: Nonholomorphic solutions to ordinary differential equations in the complex domain.Math. Nachr., vol. 144, 1989, 109-117. MR 1037165
Reference: [16] Vekua I. N.: New methods for solving elliptic equations.Wiley, New York 1967. Zbl 0146.34301, MR 0212370
Reference: [17] Vekua I. N.: Generalized analytic functions.2nd edit. Moscow 1988 (in Russian); Engl. transl. Oxford 1962. Zbl 0698.47036, MR 0150320
.

Files

Files Size Format View
ArchMathRetro_034-1998-3_1.pdf 236.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo