Previous |  Up |  Next

Article

Title: Properties of a new class of recursively defined Baskakov-type operators (English)
Author: Agratini, Octavian
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 34
Issue: 3
Year: 1998
Pages: 353-359
Summary lang: English
.
Category: math
.
Summary: By starting from a recent paper by Campiti and Metafune [7], we consider a generalization of the Baskakov operators, which is introduced by replacing the binomial coefficients with other coefficients defined recursively by means of two fixed sequences of real numbers. In this paper, we indicate some of their properties, including a decomposition into an expression which depends linearly on the fixed sequences and an estimation of the corresponding order of approximation, in terms of the modulus of continuity. (English)
Keyword: Baskakov-type operators
Keyword: order of approximation
Keyword: modulus of continuity
MSC: 26D15
MSC: 41A25
MSC: 41A35
MSC: 41A36
idZBL: Zbl 0966.41013
idMR: MR1662044
.
Date available: 2009-02-17T10:14:26Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107662
.
Reference: [1] Agratini O.: Construction of Baskakov-type operators by wavelets.Rev. d’Analyse Num. et de Théorie de l’Approx., tome 26(1997), 3-10. Zbl 1039.42028, MR 1703913
Reference: [2] Altomare F.: Positive projections approximation processes and degenerate diffusion equations.Conf. Sem. Mat. Univ. Bari, 241(1991), 43-68. Zbl 0789.47030, MR 1185556
Reference: [3] Altomare F., Campiti M.: Korovkin-type Approximation Theory and its Applications.de Gruyter Studies in Mathematics, Vol. 17, de Gruyter, Berlin/New-York, 1994. Zbl 0924.41001, MR 1292247
Reference: [4] Altomare F., Romanelli S.: On some classes of Lototsky-Schnabl operators.Note Mat., 12(1992), 1-13. Zbl 0811.47033, MR 1258559
Reference: [5] Baskakov V. A.: An example of a sequence of linear positive operators in the space of continuous functions.Dokl. Akad. Nauk SSSR, 113(1957), 249-251 (in Russian). MR 0094640
Reference: [6] Campiti M.: Limit semigroups of Stancu-Mühlbach operators associated with positive projections.Ann. Sc. Norm. Sup. Pisa, Cl. Sci., 19(1992), 4, 51-67. Zbl 0784.47040, MR 1183757
Reference: [7] Campiti M., Metafune G.: Approximation properties of recursively defined Bernstein-type operators.Journal of Approx. Theory, 87(1996), 243-269. Zbl 0865.41027, MR 1420333
Reference: [8] Campiti M., Metafune G.: Evolution equations associated with recursively defined Bernstein-type operators.Journal of Approx. Theory, 87(1996), 270-290. Zbl 0874.41010, MR 1420334
Reference: [9] Stancu D. D.: Two classes of positive linear operators.Analele Univ. Timişoara, Ser. St. Matem. 8(1970), 213-220. Zbl 0276.41009, MR 0333538
Reference: [10] Stancu D. D. : Approximation of functions by means of some new classes of positive linear operators.in “Numerische Methoden der Approximations Theorie”, Vol. 1 (Proc. Conf. Math. Res. Inst., Oberwolfach, 1971; eds. L. Collatz, G. Meinardus), 187-203, Basel: Birkhäuser, 1972. MR 0380207
.

Files

Files Size Format View
ArchMathRetro_034-1998-3_4.pdf 237.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo