Previous |  Up |  Next

Article

Title: Higher order contact of real curves in a real hyperquadric. II (English)
Author: Villarroel, Yuli
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 34
Issue: 3
Year: 1998
Pages: 361-377
Summary lang: English
.
Category: math
.
Summary: Let $\Phi $ be an Hermitian quadratic form, of maximal rank and index $(n,1)$, defined over a complex $(n+1)$ vector space $V$. Consider the real hyperquadric defined in the complex projective space $P^nV$ by \[ Q=\{[\varsigma ]\in P^nV,\;\Phi (\varsigma )=0\}. \] Let $G$ be the subgroup of the special linear group which leaves $ Q $ invariant and $D$ the $(2n)-$ distribution defined by the Cauchy Riemann structure induced over $Q$. We study the real regular curves of constant type in $Q$, tangent to $D$, finding a complete system of analytic invariants for two curves to be locally equivalent under transformations of $G$. (English)
Keyword: geometric structures on manifolds
Keyword: local submanifolds
Keyword: contacttheory
Keyword: actions of groups
MSC: 32F40
MSC: 53A55
MSC: 53B25
MSC: 53B35
idZBL: Zbl 0967.53015
idMR: MR1662048
.
Date available: 2009-02-17T10:14:30Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107663
.
Related article: http://dml.cz/handle/10338.dmlcz/107561
.
Reference: [1] Bredon G. E.: Introduction to Compact Transformations groups.Academic. Press, New York (1972). MR 0413144
Reference: [2] Cartan E.: Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes, I. II.Ouvres II, 2, 1231-1304; ibid III,2, 1217-1238.
Reference: [3] Cartan E.: Théorie des groupes finis el la géométrie différentielle traitées par la Methode du repère mobile.Gauthier-Villars, Paris, (1937).
Reference: [4] Chern S. S., Moser J. K.: Real hypersurfaces in complex manifolds.Acta mathematica 133(1975), 219-271. Zbl 0302.32015, MR 0425155
Reference: [5] Chern S. S., Cowen J. M.: Frenet frames along holomorphic curves.Topics in Differential Geometry, 1972-1973, 191-203. Dekker, New York, 1974. MR 0361170
Reference: [6] Ehresmann C.: Les prolongements d’un space fibré diferéntiable.C.R. Acad. Sci. Paris, 240(1955), 1755-1757. MR 0071083
Reference: [7] Green M. L.: The moving frame, Differential invariants and rigity theorems for curves in homogeneous spaces.Duke Math. Journal, Vol 45, No.4 (1978), 735-779. MR 0518104
Reference: [8] Griffiths P.: On Cartan’s method of Lie groups and moving frames as applied to existence and uniqueness questions in differential geometry.Duke Math. J. 41(1974), 775-814. MR 0410607
Reference: [9] Hermann R.: Equivalence invariants for submanifolds of Homogeneous Spaces.Math. Annalen 158(1965), 284-289. Zbl 0125.39502, MR 0203653
Reference: [10] Hermann R.: Existence in the large of parallelism homomorphisms.Trans. Am. Math. Soc. 108, 170-183 (1963). MR 0151924
Reference: [11] Jensen G. R.: Higher Order Contact of Submanifolds of Homogeneous Spaces.Lectures notes in Math. Vol. 610, Springer-Verlag, New York (1977). Zbl 0356.53005, MR 0500648
Reference: [12] Jensen G. R.: Deformation of submanifolds of homogeneous spaces.J. of Diff. Geometry, 16(1981), 213-246. Zbl 0473.53044, MR 0638789
Reference: [13] Kolář I.: Canonical forms on the prolongations of principle fibre bundles.Rev. Roum. Math. Pures et Appl., Bucarest, Tome XVI, No.7 (1971), 1091-1106. MR 0301668
Reference: [14] Rodrigues A. M.: Contact and equivalence of submanifolds of homogeneous spaces, aspects of Math. and its Applications.Elsevier Science Publishers B.V. (1986). MR 2342861
Reference: [15] Villarroel Y.: Differential Geometry and Applications.Proc. Conf. Brno (1996), 207-214. MR 1406339
Reference: [16] Villarroel Y.: Higher order contact of real curves in a real hyperquadric.Archivum mathematicum, Tomus 32(1996), 57-73. Zbl 0870.53025, MR 1399840
.

Files

Files Size Format View
ArchMathRetro_034-1998-3_5.pdf 305.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo