Previous |  Up |  Next


natural operator; bundle functor
The complete description of all natural operators lifting real valued functions to bundle functors on fibered manifolds is given. The full collection of all natural operators lifting projectable real valued functions to bundle functors on fibered manifolds is presented.
[1] Debecki, J., Gancarzewicz, J., Mikulski, W. M., de Leon, M.: Invariants of Lagrangians and their classifications. J. Math. Phys. 35(9) 1994, 4568-4593. MR 1290890
[2] Doupovec, M., Kurek, J.: Liftings of tensor fields to the cotangent bundles. Differential Geometry and Applications, Proc. of the 6th International Conference Brno 1995, 141-150. MR 1406334
[3] Gancarzewicz, J.: Liftings of functions and vector fields to natural bundles, Warszawa 1983, Dissertationes Mathematicae CCXII. MR 0697471
[4] Kolář, I., Michor, P. W., Slovák, J.: Natural operations in differential geometry, Springer-Verlag, Berlin 1993. MR 1202431
[5] Mikulski, W. M.: Natural transformations transforming functions and vector fields to functions on some natural bundles. Math. Bohemica, 117 (1992), 217-223. MR 1165899 | Zbl 0810.58004
[6] Mikulski, W. M.: Natural operators lifting functions to cotangent bundles of linear higher order tangent bundles. Winter School on Geometry and Physics (Srni 1995), Suppl. ai Rendiconti del Circolo Matematico di Palermo, 43 (1996), 199-206. MR 1463522 | Zbl 0909.58002
[7] Mikulski, W. M.: Invariants of Lagrangians on Weil bundles and their classifications. Geom. Dedicata, (1997) (to appear). MR 1468862 | Zbl 0890.58001
[8] Morimoto, A.: Prolongations of connections to bundles of infinitely near points. J. Diff. Geom. 11 (1976), 476-498. MR 0445422
[9] Yano, K., Ishihara, S.: Tangent and cotangent bundles. Marcel Dekker, INC., New York 1973. MR 0350650
[10] Yano, K., Kobayashi, S.: Prolongations of tensor fields and connections to tangent bundles. J. Math. Soc. Japan, 18(1966), 194-210. MR 0193596
Partner of
EuDML logo