Previous |  Up |  Next

Article

Title: Natural operators lifting functions to bundle functors on fibered manifolds (English)
Author: Mikulski, W. M.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 34
Issue: 3
Year: 1998
Pages: 387-391
Summary lang: English
.
Category: math
.
Summary: The complete description of all natural operators lifting real valued functions to bundle functors on fibered manifolds is given. The full collection of all natural operators lifting projectable real valued functions to bundle functors on fibered manifolds is presented. (English)
Keyword: natural operator
Keyword: bundle functor
MSC: 53A55
MSC: 58A20
MSC: 58A32
idZBL: Zbl 0970.58003
idMR: MR1662056
.
Date available: 2009-02-17T10:14:39Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107665
.
Reference: [1] Debecki, J., Gancarzewicz, J., Mikulski, W. M., de Leon, M.: Invariants of Lagrangians and their classifications.J. Math. Phys. 35(9) 1994, 4568-4593. MR 1290890
Reference: [2] Doupovec, M., Kurek, J.: Liftings of tensor fields to the cotangent bundles.Differential Geometry and Applications, Proc. of the 6th International Conference Brno 1995, 141-150. MR 1406334
Reference: [3] Gancarzewicz, J.: Liftings of functions and vector fields to natural bundles, Warszawa 1983, Dissertationes Mathematicae CCXII.. MR 0697471
Reference: [4] Kolář, I., Michor, P. W., Slovák, J.: Natural operations in differential geometry, Springer-Verlag, Berlin 1993.. MR 1202431
Reference: [5] Mikulski, W. M.: Natural transformations transforming functions and vector fields to functions on some natural bundles.Math. Bohemica, 117 (1992), 217-223. Zbl 0810.58004, MR 1165899
Reference: [6] Mikulski, W. M.: Natural operators lifting functions to cotangent bundles of linear higher order tangent bundles.Winter School on Geometry and Physics (Srni 1995), Suppl. ai Rendiconti del Circolo Matematico di Palermo, 43 (1996), 199-206. Zbl 0909.58002, MR 1463522
Reference: [7] Mikulski, W. M.: Invariants of Lagrangians on Weil bundles and their classifications.Geom. Dedicata, (1997) (to appear). Zbl 0890.58001, MR 1468862
Reference: [8] Morimoto, A.: Prolongations of connections to bundles of infinitely near points.J. Diff. Geom. 11 (1976), 476-498. MR 0445422
Reference: [9] Yano, K., Ishihara, S.: Tangent and cotangent bundles.Marcel Dekker, INC., New York 1973. MR 0350650
Reference: [10] Yano, K., Kobayashi, S.: Prolongations of tensor fields and connections to tangent bundles.J. Math. Soc. Japan, 18(1966), 194-210. MR 0193596
.

Files

Files Size Format View
ArchMathRetro_034-1998-3_7.pdf 220.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo