Article
Keywords:
Nilpotent; Gorenstein Injective Modules
Summary:
In this paper, we define Gorenstein injective rings, Gorenstein injective modules and their envelopes. The main topic of this paper is to show that if $D$ is a Gorenstein integral domain and $M$ is a left $D$-module, then the torsion submodule $tGM$ of Gorenstein injective envelope $GM$ of $M$ is also Gorenstein injective. We can also show that if $M$ is a torsion $D$-module of a Gorenstein injective integral domain $D$, then the Gorenstein injective envelope $GM$ of $M$ is torsion.
References:
[2] Enochs E.:
Injective and flat covers, envelopes and resolvents. Israel J of Math. 39(1981), 189-209.
MR 0636889 |
Zbl 0464.16019
[3] Enochs E., Jenda O. M. G.:
Gorenstein injective and projective modules. Math. Z. 220(1995), 611-633.
MR 1363858 |
Zbl 0845.16005
[4] Enochs E., Jenda O., Xu J.:
Covers and envelopes over Gorenstein rings. (to appear in Tsukuba J. Math.)
MR 1422636 |
Zbl 0895.16001
[5] Yasuo Iwanaga:
On rings with finite self-injective dimension. Comm. Algebra, 7(4), (1979), 393-414.
MR 0522552
[6] Yasuo Iwanaga:
On rings with finite self-injective dimension II. Tsukuba J. Math. 4(1980), 107-113.
MR 0597688