Previous |  Up |  Next

Article

Keywords:
Nilpotent; Gorenstein Injective Modules
Summary:
In this paper, we define Gorenstein injective rings, Gorenstein injective modules and their envelopes. The main topic of this paper is to show that if $D$ is a Gorenstein integral domain and $M$ is a left $D$-module, then the torsion submodule $tGM$ of Gorenstein injective envelope $GM$ of $M$ is also Gorenstein injective. We can also show that if $M$ is a torsion $D$-module of a Gorenstein injective integral domain $D$, then the Gorenstein injective envelope $GM$ of $M$ is torsion.
References:
[1] Bass H.: On the ubiquity of Gorenstein rings. Math. Z. 82(1963), 8-28. MR 0153708 | Zbl 0112.26604
[2] Enochs E.: Injective and flat covers, envelopes and resolvents. Israel J of Math. 39(1981), 189-209. MR 0636889 | Zbl 0464.16019
[3] Enochs E., Jenda O. M. G.: Gorenstein injective and projective modules. Math. Z. 220(1995), 611-633. MR 1363858 | Zbl 0845.16005
[4] Enochs E., Jenda O., Xu J.: Covers and envelopes over Gorenstein rings. (to appear in Tsukuba J. Math.) MR 1422636 | Zbl 0895.16001
[5] Yasuo Iwanaga: On rings with finite self-injective dimension. Comm. Algebra, 7(4), (1979), 393-414. MR 0522552
[6] Yasuo Iwanaga: On rings with finite self-injective dimension II. Tsukuba J. Math. 4(1980), 107-113. MR 0597688
[7] Rotman J.: An introduction to homological algebra. Academic Press Inc., New York, 1979. MR 0538169 | Zbl 0441.18018
Partner of
EuDML logo