Previous |  Up |  Next


Title: On torsion Gorenstein injective modules (English)
Author: Yi, Okyeon
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 34
Issue: 4
Year: 1998
Pages: 445-454
Summary lang: English
Category: math
Summary: In this paper, we define Gorenstein injective rings, Gorenstein injective modules and their envelopes. The main topic of this paper is to show that if $D$ is a Gorenstein integral domain and $M$ is a left $D$-module, then the torsion submodule $tGM$ of Gorenstein injective envelope $GM$ of $M$ is also Gorenstein injective. We can also show that if $M$ is a torsion $D$-module of a Gorenstein injective integral domain $D$, then the Gorenstein injective envelope $GM$ of $M$ is torsion. (English)
Keyword: Nilpotent
Keyword: Gorenstein Injective Modules
MSC: 13C11
MSC: 13C12
MSC: 13H10
MSC: 16D50
idZBL: Zbl 0972.16001
idMR: MR1679639
Date available: 2009-02-17T10:15:54Z
Last updated: 2012-05-10
Stable URL:
Reference: [1] Bass H.: On the ubiquity of Gorenstein rings.Math. Z. 82(1963), 8-28. Zbl 0112.26604, MR 0153708
Reference: [2] Enochs E.: Injective and flat covers, envelopes and resolvents.Israel J of Math. 39(1981), 189-209. Zbl 0464.16019, MR 0636889
Reference: [3] Enochs E., Jenda O. M. G.: Gorenstein injective and projective modules.Math. Z. 220(1995), 611-633. Zbl 0845.16005, MR 1363858
Reference: [4] Enochs E., Jenda O., Xu J.: Covers and envelopes over Gorenstein rings.(to appear in Tsukuba J. Math.) Zbl 0895.16001, MR 1422636
Reference: [5] Yasuo Iwanaga: On rings with finite self-injective dimension.Comm. Algebra, 7(4), (1979), 393-414. MR 0522552
Reference: [6] Yasuo Iwanaga: On rings with finite self-injective dimension II.Tsukuba J. Math. 4(1980), 107-113. MR 0597688
Reference: [7] Rotman J.: An introduction to homological algebra.Academic Press Inc., New York, 1979. Zbl 0441.18018, MR 0538169


Files Size Format View
ArchMathRetro_034-1998-4_4.pdf 223.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo