Previous |  Up |  Next

Article

Title: A pointwise inequality in submanifold theory (English)
Author: De Smet, P. J.
Author: Dillen, F.
Author: Verstraelen, L.
Author: Vrancken, L.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 35
Issue: 2
Year: 1999
Pages: 115-128
Summary lang: English
.
Category: math
.
Summary: We obtain a pointwise inequality valid for all submanifolds $M^n$ of all real space forms $N^{n+2}(c)$ with $n\ge 2$ and with codimension two, relating its main scalar invariants, namely, its scalar curvature from the intrinsic geometry of $M^n$, and its squared mean curvature and its scalar normal curvature from the extrinsic geometry of $M^n$ in $N^m(c)$. (English)
Keyword: submanofolds of real space froms
Keyword: scalar curvature
Keyword: normal curvature
Keyword: mean curvature
Keyword: inequality
MSC: 53C40
idZBL: Zbl 1054.53075
idMR: MR1711669
.
Date available: 2008-06-06T22:22:46Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107688
.
Reference: [A] Abe, K.: The complex version of Hartman-Nirenberg cylinder theorem.J. Differ. Geom 7 (1972), 453–460. MR 0383307
Reference: [B] Blair, D. E.: Contact Manifolds in Riemannian Geometry.Lecture Notes in Mathematics, vol. 509, Springer, Berlin, 1976. Zbl 0319.53026, MR 0467588
Reference: [C1] Chen, B. Y.: Geometry of submanifolds.Marcel Dekker, New York, 1973. Zbl 0262.53036, MR 0353212
Reference: [C2] Chen, B. Y.: Some pinching and classification theorems for minimal submanifolds.Archiv Math. 60 (1993), 568–578. Zbl 0811.53060, MR 1216703
Reference: [C3] Chen, B. Y.: Mean curvature and shape operator of isometric immersions in real-space-forms.Glasgow Math. J. 38 (1996), 87–97. Zbl 0866.53038, MR 1373963
Reference: [CDVV1] Chen, B. Y., Dillen, F., Verstraelen, L. and Vrancken, L.: Two equivariant totally real immersions into the nearly Kähler 6-sphere and their characterization.Japanese J. Math. 21 (1995), 207–222. MR 1338360
Reference: [CDVV2] Chen, B.Y., Dillen, F., Verstraelen, L. and Vrancken, L.: Characterizing a class of totally real submanifolds of $S^6(1)$ by their sectional curvatures.Tôhoku Math. J. 47 (1995), 185–198. MR 1329520
Reference: [CDVV3] Chen, B.Y., Dillen, F., Verstraelen, L. and Vrancken, L.: An exotic totally real minimal immersion of $S^3$ into $\mathbb{C}P^3$ and its characterization.Proc. Roy. Soc. Edinburgh 126A (1996), 153–165. MR 1378838
Reference: [CDVV4] Chen, B.Y., Dillen, F., Verstraelen, L. and Vrancken, L.: Totally real minimal immersion of $\mathbb{C}P^3$ satisfying a basic equality.Arch. Math. 63 (1994), 553–564. MR 1300757
Reference: [CY] Chen, B. Y., Yang, J.: Elliptic functions, Theta function and hypersurfaces satisfying a basic equality.Math. Proc. Camb. Phil. Soc. 125 (1999), 463–509. MR 1656829
Reference: [Ch] Chern, S. S.: Minimal submanifolds in a Riemannian manifold.Univ. of Kansas, Lawrence, Kansas, 1968. MR 0248648
Reference: [Da1] Dajczer, M., Florit, L. A.: A class of austere submanifolds.preprint.
Reference: [Da2] Dajczer, M., Florit, L. A.: On Chen’s basic equality.Illinois Jour. Math 42 (1998), 97–106. MR 1492041
Reference: [DDVV] De Smet, P. J., Dillen, F., Verstraelen, L. and Vrancken, L.: The normal curvature of totally real submanifolds of $S^6(1)$.Glasgow Mathematical Journal 40 (1998), 199–204. MR 1630238
Reference: [DN] Dillen, F., Nölker, S.: Semi-parallelity, multi-rotation surfaces and the helix-property.J. Reine. Angew. Math. 435 (1993), 33–63. MR 1203910
Reference: [DV] Dillen, F., Vrancken, L.: Totally real submanifolds in $S^6$ satisfying Chen’s equality.Trans. Amer. Math. Soc. 348 (1996), 1633–1646. MR 1355070
Reference: [GR] Guadalupe, I. V., Rodriguez, L.: Normal curvature of surfaces in space forms.Pacific J. Math. 106 (1983), 95–103. MR 0694674
Reference: [N] Nölker, S.: Isometric immersions of warped products.Diff. Geom. and Appl. (to appear). MR 1384876
Reference: [O] O’Neill, B.: The fundamental equations of a submersion.Michigan Math. J. 13 (1966), 459–469. MR 0200865
Reference: [W] Wintgen, P.: Sur l’inégalité de Chen-Willmore.C. R. Acad. Sc. Paris 288 (1979), 993– 995. Zbl 0421.53003, MR 0540375
Reference: [YI] Yano, K., Ishihara, S.: Invariant submanifolds of an almost contact manifold.Kōdai Math. Sem. Rep. 21 (1969), 350– 364. MR 0248695
.

Files

Files Size Format View
ArchMathRetro_035-1999-2_3.pdf 393.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo