Previous |  Up |  Next

Article

Title: Riemannian manifolds in which certain curvature operator has constant eigenvalues along each helix (English)
Author: Alexieva, Yana
Author: Ivanov, Stefan
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 35
Issue: 2
Year: 1999
Pages: 129-140
Summary lang: English
.
Category: math
.
Summary: Riemannian manifolds for which a natural skew-symmetric curvature operator has constant eigenvalues on helices are studied. A local classification in dimension three is given. In the three dimensional case one gets all locally symmetric spaces and all Riemannian manifolds with the constant principal Ricci curvatures $r_1 = r_2 = 0, r_3 \ne 0$, which are not locally homogeneous, in general. (English)
Keyword: helix
Keyword: constant eigenvalues of the curvature operator
Keyword: locally symmetric spaces
Keyword: curvature homogeneous spaces
MSC: 53C15
MSC: 53C20
MSC: 53C21
MSC: 53C22
idZBL: Zbl 1054.53058
idMR: MR1711665
.
Date available: 2008-06-06T22:22:49Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107689
.
Reference: [1] Berndt J., Vanhecke L.: Two natural generalizations of locally symmetric spaces.Diff.Geom. and Appl. 2 (1992), 57–80. Zbl 0747.53013, MR 1244456
Reference: [2] Berndt J., Prüfer F., Vanhecke L.: Symmetric-like Riemannian manifolds and geodesic symmetries.Proc. Royal Soc. Edinburg A 125 (1995), 265–282. Zbl 0830.53036, MR 1331561
Reference: [3] Berndt J., Vanhecke L.: Geodesic sprays and $\mathcal C$-and $\mathcal B$-spaces.Rend. Sem. Politec. Torino 50(1992), no.4, 343–358. MR 1261447
Reference: [4] Berndt J., Vanhecke L.: Geodesic spheres and generalizations of symmetric spaces.Boll. Un. Mat. Ital. A(7), 7 (1993), no. 1, 125–134. Zbl 0778.53043, MR 1215106
Reference: [5] Chi Q. S.: A curvature characterization of certain locally rank-one symmetric spaces.J. Diff. Geom. 28 (1988), 187–202. Zbl 0654.53053, MR 0961513
Reference: [6] Gilkey P.: Manifolds whose curvature operator has constant eigenvalues at the basepoint.J. Geom. Anal. 4 2 (1992), 157–160. MR 1277503
Reference: [7] Gilkey P.: Manifolds whose higher odd order curvature operators have constant eigenvalues at the basepoint.J. Geom. Anal. 2, 2 (1992), 151–156. Zbl 0739.53011, MR 1151757
Reference: [8] Gilkey P., Swann A., Vanhecke L.: Isoparametric geodesic spheres and a Conjecture of Osserman concerning the Jacobi operator.Quart. J. Math. Oxford (2), 46 (1995), 299–320. Zbl 0848.53023, MR 1348819
Reference: [9] Gilkey P., Leahy J., Sadofsky H.: Riemannian manifolds whose skew-symmetric curvature operator has constant eigenvalues.preprint. Zbl 0990.53011, MR 1722810
Reference: [10] Ivanov S., Petrova I.: Riemannian manifold in which certain curvature operator has constant eigenvalues along each circle.Ann. Glob. Anal. Geom. 15 (1997), 157–171. MR 1448723
Reference: [11] Ivanov S., Petrova I.: Curvature operator with parallel Jordanian basis on circles.Riv. Mat. Univ. Parma, 5 (1996), 23–31. Zbl 0877.53031, MR 1456394
Reference: [12] Ivanov S., Petrova I.: Riemannian manifold in which the skew-symmetric curvature operator has pointwise constant eigenvalues.Geometrie Dedicata, 70 (1998), 269–282. Zbl 0903.53016, MR 1624814
Reference: [13] Ivanov S., Petrova I.: Locally conformal flat Riemannian manifolds with constant principal Ricci curvatures and locally conformal flat ${\mathcal C}$-spaces.E-print dg-ga/9702009.
Reference: [14] Ivanov S., Petrova I.: Conformally flat Einstein-like manifolds and conformally flat Riemannian 4-manifolds all of whose Jacobi operators have parallel eigenspaces along every geodesic.E-print dg-ga/9702019.
Reference: [15] Kowalski O.: A classification of Riemannian manifolds with constant principal Ricci curvatures $r_1 = r_2 \ne r_3$.Nagoya Math. J. 132 (1993), 1–36. MR 1253692
Reference: [16] Kowalski O.: .private communication Zbl 1235.35187
Reference: [17] Kowalski O., Prüfer F.: On Riemannian 3-manifolds with distinct constant Ricci eigenvalues.Math. Ann. 300 (1994), 17–28. MR 1289828
Reference: [18] Milnor J.: Curvature of left-invariant metrics on Lie groups.Adv. in Math. 21 (1976), 163–170. MR 0425012
Reference: [19] Osserman R.: Curvature in the 80’s.Amer. Math. Monthly, (1990), 731–756. MR 1072814
Reference: [20] Shabó Z.: Structure theorems on Riemannian spaces satisfying $R(X,Y)\circ R = 0$, I. The local version.J. Diff. Geom. 17 (1982), 531–582. MR 0683165
Reference: [21] Spiro A., Tricerri F.: 3-dimensional Riemannian metrics with prescribed Ricci principal curvatures.J. Math. Pures Appl. 74 (1995), 253–271. Zbl 0851.53022, MR 1327884
.

Files

Files Size Format View
ArchMathRetro_035-1999-2_4.pdf 356.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo