Previous |  Up |  Next

Article

Title: Nonnegativity of functionals corresponding to the second order half-linear differential equation (English)
Author: Mařík, Robert
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 35
Issue: 2
Year: 1999
Pages: 155-164
Summary lang: English
.
Category: math
.
Summary: In this paper we study extremal properties of functional associated with the half–linear second order differential equation E$_p$. Necessary and sufficient condition for nonnegativity of this functional is given in two special cases: the first case is when both points are regular and the second is the case, when one end point is singular. The obtained results extend the theory of quadratic functionals. (English)
Keyword: half–linear differential equation
Keyword: associated functional
Keyword: Picone identity
Keyword: conjugate points
MSC: 34C10
MSC: 49K15
idZBL: Zbl 1055.49012
idMR: MR1711728
.
Date available: 2008-06-06T22:23:04Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107693
.
Reference: [1] Bihari, I.: On the second order half-linear differential equation.Studia Sci. Math. Hungar, 3 (1968), 411–437. Zbl 0167.37403, MR 0267190
Reference: [2] Došlá, Z., Došlý, O.: On transformations of singular quadratic functionals corresponding to equation $(py^{\prime })^{\prime }+qy=0$.Arch. Math. (Brno) 24 (1988), 75–82. MR 0983225
Reference: [3] Došlá, Z., Došlý, O.: Quadratic funtionals with general boundary conditions.Appl. Math. Opt. 36 (1997), 243–262. MR 1457870
Reference: [4] Elbert, Á.: A half-linear second order differential equation.Coll. Math. Soc. János Bolyai 30. Qual. theory of diff. eq. Szeged (Hungary) (1979), 153–179.
Reference: [5] Ioffe, A. D., Tihomirov, V. M.: Theory of extremal problems.North-Holland Publ., 1979, pp. 122–124. MR 0528295
Reference: [6] Jaroš, J., Kusano, T.: A Picone type identity for second order half-linear differential equations.(to appear). MR 1711081
Reference: [7] Kaňovský, J.: Global transformations of linear differential equations and quadratic functionals I,II.Arch. Math. 19 (1983), 161–171. MR 0725199
Reference: [8] Leighton, W., Morse, M.: Singular quadratic functionals.Trans. Amer. Math. Soc. 40 (1936), 252–286. MR 1501873
Reference: [9] Li, H. J., Yeh, Ch. Ch.: Sturmian comparison theorem for half-linear second order diff. equations.Proc. Roy. Soc. of Edinburg 125 A (1995), 1193–1204. MR 1362999
Reference: [10] Reid, W. T.: Ordinary differential equations.John Wiley and Sons, New York, 1971. Zbl 0212.10901, MR 0273082
.

Files

Files Size Format View
ArchMathRetro_035-1999-2_8.pdf 360.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo