Previous |  Up |  Next

Article

Title: Countably evaluating homomorphisms on real function algebras (English)
Author: Adam, Eva
Author: Biström, Peter
Author: Kriegl, Andreas
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 35
Issue: 2
Year: 1999
Pages: 165-192
Summary lang: English
.
Category: math
.
Summary: By studying algebra homomorphisms, which act as point evaluations on each countable subset, we obtain improved results on the question when all algebra homomorphisms are point evaluations. (English)
Keyword: realcompactness
Keyword: algebras of smoth functions
Keyword: countably evaluating homomorphisms
MSC: 46E25
MSC: 46J10
MSC: 46J15
MSC: 54C35
MSC: 54D60
idZBL: Zbl 1050.46025
idMR: MR1711724
.
Date available: 2008-06-06T22:23:07Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107694
.
Reference: [Ad] Adam, E.: Smoothly realcompact spaces.Thesis, Univ. Vienna 1993.
Reference: [Ar] Arias-de-Reyna, J.: A real valued homomorphism on algebras of differentiable functions.Proc. Amer. Math. Soc. 90, 407–411 (1984). Zbl 0694.46036, MR 0929406
Reference: [BJ] Biström, P., Jaramillo, J.A.: $C^\infty $-bounding sets and compactness.Math. Scand. 75, 82–86 (1994). MR 1308939
Reference: [BJL] Biström, P., Jaramillo, J.A., Lindström, M.: Algebras of real analytic functions; Homomorphisms and bounding sets.Stud. Math. 115, 23–37 (1995). MR 1347430
Reference: [BL$_1$] Biström, P., Lindström, M.: Homomorphisms on $C^\infty (E)$ and $C^\infty $-bounding sets.Monatsh. Math. 115, 257–266 (1993). MR 1233957
Reference: [BL$_2$] Biström, P., Lindström, M.: Characterizations of the spectra of certain function algebras.Archiv Math. 60, 177–181 (1993). MR 1199676
Reference: [BBL] Biström, P., Bjon, S., Lindström, M.: Function algebras on which homomorphisms are point evaluations on sequences.Manuscripta Math. 73, 179–185 (1991). MR 1128686
Reference: [CO] Cascales, B., Orihuela, J.: On compactness in locally convex spaces.Math. Z. 195, 365–381 (1987). MR 0895307
Reference: [C] Corson, H. H.: The weak topology of a Banach space.Trans. Amer. Math. Soc. 101, 1–15 (1961). Zbl 0104.08502, MR 0132375
Reference: [DGZ] Deville, R., Godefroy, G., Zizler, V.E.: The three space problem for smooth partitions of unity and $C(K)$-spaces.Math. Ann. 288, 613–625 (1990). MR 1081267
Reference: [Ed] Edgar, G.A.: Measurability in a Banach space, II.Indiana Univ. Math. J. 28, 559–579 (1979). Zbl 0418.46034, MR 0542944
Reference: [En] Engelking, R.: General topology.Berlin, Haldermann 1989. Zbl 0684.54001, MR 1039321
Reference: [FG] Fabian, M., Godefroy, G.: The dual of every Asplund space admits a projectional resolution of identity.Studia Math. 91, 141–151 (1988). MR 0985081
Reference: [FK] Frölicher, A., Kriegl, A.: Linear Spaces and Differentiation Theory.Wiley 1988. MR 0961256
Reference: [GGJ] Garrido, M.I., Gómez, J., Jaramillo, J.A.: Homomorphisms on function algebras.Can. J. Math. 46, 734–745 (1994). MR 1289057
Reference: [GJ] Gillman, L., Jerison, M.: Rings of continuous functions.Springer 1960. MR 0116199
Reference: [GPWZ] Godefroy, G., Pelant, J., Whitfield, J.H.M., Zizler, V.E.: Banach space properties of Ciesielski-Pol’s $C(K)$ space.Proc. Amer. Math. Soc. 103, 1087–1093 (1988). MR 0954988
Reference: [HWW] Harmand, P., Werner, D., Werner, W.: M-Ideals in Banach Spaces and Banach Algebras.Lecture notes in Mathematics, 1547. Springer 1993. MR 1238713
Reference: [J] Jarchow, H.: Locally convex spaces.Teubner 1981. Zbl 0466.46001, MR 0632257
Reference: [JZ] John, K., Zizler, V.: Smoothness and its equivalents in weakly compactly generated Banach spaces.J. Functional Anal. 15, 1–11 (1974). MR 0417759
Reference: [KMS] Kriegl, A., Michor, P., Schachermayer, W.: Characters on algebras of smooth functions.Ann. Global Anal. Geom. 7, 85–92 (1989). MR 1032327
Reference: [KM] Kriegl, A., Michor, P.: More smoothly real compact spaces.Proc. Amer. Math. Soc. 117, 467–471 (1993). MR 1110545
Reference: [N] Negrepontis, S.: Banach spaces and topology.in: Handbook of set theoretic topology (ed.: K. Kunen and J.E. Vaughan). North-Holland 1984. Zbl 0832.46005, MR 0776619
Reference: [T] Toruńczyk, H.: Smooth partitions of unity on some non-separable Banach spaces.Studia Math. T.XLVI, 43–51 (1973). MR 0339255
Reference: [V] Valdivia, M.: Topics in locally convex spaces.North-Holland 1982. Zbl 0489.46001, MR 0671092
.

Files

Files Size Format View
ArchMathRetro_035-1999-2_9.pdf 540.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo