Previous |  Up |  Next

Article

Title: An existence result for first order initial value problems for impulsive differential inclusions in Banach spaces (English)
Author: Benchohra, Mouffak
Author: Boucherif, Abdelkader
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 36
Issue: 3
Year: 2000
Pages: 159-169
Summary lang: English
.
Category: math
.
Summary: In this paper, a nonlinear alternative for multivalued maps is used to investigate the existence of solutions of first order impulsive initial value problem for differential inclusions in Banach spaces. (English)
Keyword: impulsive initial value problem
Keyword: multivalued map
Keyword: a priori bounds
Keyword: existence
Keyword: fixed point
MSC: 34A37
MSC: 34A60
MSC: 34G25
idZBL: Zbl 1054.34099
idMR: MR1785033
.
Date available: 2008-06-06T22:25:38Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107728
.
Reference: [1] Aubin J. P., Cellina A.: Differential Inclusions.Springer-Verlag, Berlin-Heidelberg, 1984. Zbl 0538.34007, MR 0755330
Reference: [2] Bainov D. D., Simeonov P. S.: Systems with Impulse Effect.Ellis Horwood Ltd., Chichister, 1989. Zbl 0684.34056, MR 1010418
Reference: [3] Benchohra M.: Existence of solutions for differential inclusions in Banach space.Commun. Appl. Anal. 4 (1) (2000), 71–77. Zbl 1089.34540, MR 1855983
Reference: [4] Benchohra M., Boucherif A.: On first order initial value problems for impulsive differential inclusions in Banach Spaces.Dynam. Syst. Appl. 8 (1) (1999), 119–126. Zbl 0929.34017, MR 1669010
Reference: [5] Deimling K.: Multivalued Differential Equations.Walter De Gruyter, Berlin-New York, 1992. Zbl 0820.34009, MR 1189795
Reference: [6] Erbe L., Krawcewicz W.: Existence of solutions to boundary value problems for impulsive second order differential inclusions.Rockey Mountain J. Math. 22 (1992), 519–539. Zbl 0784.34012, MR 1180717
Reference: [7] Frigon M., O’Regan D.: Existence results for first order impulsive differential equations.J. Math. Anal. Appl. 193 (1995), 96–113. MR 1338502
Reference: [8] Frigon M., O’Regan D.,: Boundary value problems for second order impulsive differential equations using set-valued maps.Rapport DMS-357, University of Montreal, 1993.
Reference: [9] Frigon M.: Application de la théorie de la transversalité topologique à des problèmes non linéaires pour des équations différentielles ordinaires.Dissertationes Math. 296 (1990), 1–79. Zbl 0728.34017, MR 1075674
Reference: [10] Lakshmikantham V., Bainov D. D., Simeonov P. S.: Theory of Impulsive Differential Equations.World Scientific, Singapore, 1989. Zbl 0719.34002, MR 1082551
Reference: [11] Lasota A., Opial Z.: An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations.Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781–786. Zbl 0151.10703, MR 0196178
Reference: [12] Liu X.: Nonlinear boundary value problems for first order impulsive differential equations.Appl. Anal. 36 (1990), 119–130. MR 1040882
Reference: [13] Liz E.: Boundary Value Problems for New Types of Differential Equations.Ph.D. Thesis, Univ. Santiago de Compostela, 1994 (in Spanish).
Reference: [14] Liz E., Nieto J. J.: Positive solutions of linear impulsive differential equations.Commun. Appl. Anal. 2 (4) (1998), 565–571. Zbl 0903.34017, MR 1637016
Reference: [15] O’Regan D.: Fixed point theory for the sum of two operators.Appl. Math. Lett. 9 (1) (1996), 1–8. Zbl 0858.34049
Reference: [16] Pierson-Gorez C.: Problèmes aux Limites Pour des Equations Différentielles avec Impulsions.Ph.D. Thesis, Univ. Louvain-la-Neuve, 1993 (in French).
Reference: [17] Samoilenko A. M., Perestyuk N. A.: Impulsive Differential Equations.World Scientific, Singapore, 1995. Zbl 0837.34003, MR 1355787
Reference: [18] Silva G. N., Vinter R. B.: Measure driven differential inclusions.J. Math. Anal. Appl. 202 (1996), 727–746. Zbl 0877.49004, MR 1408351
Reference: [19] Stewart D. E.: Existence of solutions to rigid body dynamics and the Painleve paradoxes.C. R. Acad. Sci. Paris Ser. I Math. 325 (1997), 689–693. Zbl 0894.70006, MR 1473847
Reference: [20] Yosida K.: Functional Analysis.$6^{\text{th}}$ edn. Springer-Verlag, Berlin, 1980. Zbl 0435.46002, MR 0617913
Reference: [21] Yujun D., Erxin Z.: An application of coincidence degree continuation theorem in existence of solutions of impulsive differential equations.J. Math. Anal. Appl. 197 (1996), 875–889. MR 1373086
.

Files

Files Size Format View
ArchMathRetro_036-2000-3_1.pdf 330.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo