Previous |  Up |  Next

Article

Title: Characterization of posets of intervals (English)
Author: Lihová, Judita
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 36
Issue: 3
Year: 2000
Pages: 171-181
Summary lang: English
.
Category: math
.
Summary: If $A$ is a class of partially ordered sets, let $P(A)$ denote the system of all posets which are isomorphic to the system of all intervals of $A$ for some $A\in A.$ We give an algebraic characterization of elements of $P(A)$ for $A$ being the class of all bounded posets and the class of all posets $A$ satisfying the condition that for each $a\in A$ there exist a minimal element $u$ and a maximal element $v$ with $u\le a\le v,$ respectively. (English)
Keyword: partially ordered set
Keyword: interval
MSC: 06A06
idZBL: Zbl 1047.06002
idMR: MR1785034
.
Date available: 2008-06-06T22:25:41Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107729
.
Reference: [1] Igošin, V. I.: Selfduality of lattices of intervals of finite lattices.Inst. matem. Sibir. Otdel. AN SSSR, Meždunarodnaja konferencija po algebre posvjaščennaja pamjati A. I. Maĺceva, Tezisyy dokladov po teoriji modelej i algebraičeskich sistem, Novosibirsk 1989, s. 48.
Reference: [2] Igošin, V. I.: Lattices of intervals and lattices of convex sublattices of lattices.Uporjadočennyje množestva i rešotki. Saratov 6 (1990), 69–76.
Reference: [3] Igošin, V. I.: Identities in interval lattices of lattices.Coll. Math. Soc. J. Bolyai 33 (Contributions to Lattice Theory), Szeged 1980 (1983), 491–501. MR 0724279
Reference: [4] Igošin, V. I.: On lattices with restriction on their intervals.Coll. Math. Soc. J. Bolyai 43 (Lectures in Universal Algebra), Szeged 1983 (1986), 209–216.
Reference: [5] Igošin, V. I.: Algebraic characteristic of lattices of intervals.Uspechi matem. nauk 40 (1985), 205–206. MR 0795195
Reference: [6] Igošin, V. I.: Semimodularity in lattices of intervals.Math. Slovaca 38 (1988), 305–308. MR 0978760
Reference: [7] Jakubík, J.: Selfduality of the system of intervals of a partially ordered set.Czechoslov. Math. J. 41 (1991), 135–140. MR 1087633
Reference: [8] Jakubík, J., Lihová, J.: Systems of intervals of partially ordered sets.Math. Slovaca 46 (1996 No. 4), 355–361. MR 1472629
Reference: [9] Kolibiar, M.: Intervals, convex sublattices and subdirect representations of lattices.Universal Algebra and Applications, Banach Center Publications, Vol. 9, Warsaw 1982, 335–339. Zbl 0506.06003, MR 0738826
Reference: [10] Lihová, J.: Posets having a selfdual interval poset.Czechoslov. Math. J. 44 (1994), 523–533. MR 1288170
Reference: [11] Lihová, J.: On posets with isomorphic interval posets.Czechoslov. Math. J. 49 (1999), 67–80. MR 1676841
Reference: [12] Slavík, V.: On lattices with isomorphic interval lattices.Czechoslov. Math. J. 35 (1985), 550–554. MR 0809041
.

Files

Files Size Format View
ArchMathRetro_036-2000-3_2.pdf 374.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo