Previous |  Up |  Next

Article

Title: On Lie ideals and Jordan left derivations of prime rings (English)
Author: Ashraf, Mohammad
Author: Nadeem-ur-Rehman
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 36
Issue: 3
Year: 2000
Pages: 201-206
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a 2-torsion free prime ring and let $U$ be a Lie ideal of $R$ such that $u^{2} \in U$ for all $u \in U$. In the present paper it is shown that if $d$ is an additive mappings of $R$ into itself satisfying $d(u^{2})=2ud(u)$ for all $u \in U$, then $d(uv)=ud(v)+vd(u)$ for all $u,v \in U$. (English)
Keyword: Lie ideals
Keyword: prime rings
Keyword: Jordan left derivations
Keyword: left derivations
Keyword: torsion free rings
MSC: 16N60
MSC: 16W10
MSC: 16W25
idZBL: Zbl 1030.16018
idMR: MR1785037
.
Date available: 2008-06-06T22:25:50Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107732
.
Reference: [1] Awtar R.: Lie ideals and Jordan derivations of prime rings.Proc. Amer. Math. Soc. 90 (1984), 9–14. Zbl 0528.16020, MR 0722405
Reference: [2] Bergen J., Herstein I. N., Ker J. W.: Lie ideals and derivations of prime rings.J. Algebra 71 (1981), 259–267. MR 0627439
Reference: [3] Bresar M.: Jordan derivations on semiprime rings.Proc. Amer. Math. Soc. 104 (1988), 1003–1006. Zbl 0691.16039, MR 0929422
Reference: [4] Bresar M., Vukman J.: Jordan derivations of prime rings.Bull. Aust. Math. Soc. 37 (1988), 321–322. MR 0943433
Reference: [5] Bresar M., Vukman J.: On left derivations and related mappings.Proc. Amer. Math. Soc. 110 (1990), 7–16. Zbl 0703.16020, MR 1028284
Reference: [6] Deng Q.: On Jordan left derivations.Math. J. Okayama Univ. 34 (1992), 145–147. Zbl 0813.16021, MR 1272614
Reference: [7] Herstein I. N.: Jordan derivations of prime rings.Proc. Amer. Math. Soc. 8 (1957), 1104–1110. MR 0095864
Reference: [8] Herstein I. N.: Topics in ring theory.Univ. of Chcago Press, Chicago 1969. Zbl 0232.16001, MR 0271135
Reference: [9] Kill-Wong Jun, Byung-Do Kim: A note on Jordan left derivations.Bull. Korean Math. Soc. 33 (1996) No. 2, 221–228. MR 1405475
Reference: [10] Posner E. C.: Derivations in prime rings.Proc. Amer. Math. Soc. 8 (1957), 1093–1100. MR 0095863
Reference: [11] Vukman J.: Jordan left derivations on semiprime rings.Math. J. Okayama Univ. (to appear). Zbl 0937.16044, MR 1680747
.

Files

Files Size Format View
ArchMathRetro_036-2000-3_5.pdf 255.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo