Previous |  Up |  Next

Article

Title: The natural operators lifting vector fields to generalized higher order tangent bundles (English)
Author: Mikulski, Włodzimierz M.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 36
Issue: 3
Year: 2000
Pages: 207-212
Summary lang: English
.
Category: math
.
Summary: For natural numbers $r$ and $n$ and a real number $a$ we construct a natural vector bundle $T^{(r),a}$ over $n$-manifolds such that $T^{(r),0}$ is the (classical) vector tangent bundle $T^{(r)}$ of order $r$. For integers $r\ge 1$ and $n\ge 3$ and a real number $a<0$ we classify all natural operators $T_{\vert M_n}\rightsquigarrow TT^{(r),a}$ lifting vector fields from $n$-manifolds to $T^{(r),a}$. (English)
Keyword: natural bundle
Keyword: natural transformation
Keyword: natural operator
MSC: 53A55
MSC: 58A20
MSC: 58A32
idZBL: Zbl 1049.58010
idMR: MR1785038
.
Date available: 2008-06-06T22:25:53Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107733
.
Reference: [1] Doupovec, M.: Natural operators transforming vector fields to the second order tangent bundle.Cas. pest. mat. 115 (1990), 64–72. Zbl 0712.58003, MR 1044015
Reference: [2] Kolář, I.: On the natural operators transforming vector fields to the $r$-th tensor power.Suppl. Rendiconti Circolo Mat. Palermo, 32(II) (1993), 15–20. MR 1283617
Reference: [3] Kolář, I., Michor, P. W., Slovák, J.: Natural operations in differential geometry.Springer-Verlag, Berlin 1993. MR 1202431
Reference: [4] Mikulski, W. M.: Some natural operations on vector fields.Rendiconti Math. Roma 12(VII) (1992), 783–803. Zbl 0766.58005, MR 1205977
Reference: [5] Sekizava, M.: Natural transformations of vector fields on manifolds to vector fields on tangent bundles.Tsukuba J. Math. 12 (1988), 115–128. MR 0949905
.

Files

Files Size Format View
ArchMathRetro_036-2000-3_6.pdf 369.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo