Previous |  Up |  Next

Article

Title: The natural affinors on $(J^rT^*)^*$ (English)
Author: Mikulski, Włodzimierz M.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 36
Issue: 4
Year: 2000
Pages: 261-267
Summary lang: English
.
Category: math
.
Summary: For natural numbers $r$ and $n\ge 2$ a complete classification of natural affinors on the natural bundle $(J^rT^*)^*$ dual to $r$-jet prolongation $J^rT^*$ of the cotangent bundle over $n$-manifolds is given. (English)
Keyword: bundle functors
Keyword: natural transformations
Keyword: natural affinors
MSC: 53A55
MSC: 58A20
MSC: 58A32
idZBL: Zbl 1049.58012
idMR: MR1811170
.
Date available: 2008-06-06T22:26:11Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107740
.
Reference: [1] Doupovec, M.: Natural transformations between $TTT^*M$ and $TT^*TM$.Czechoslovak Math. J. 43 (118) 1993, 599–613. Zbl 0806.53024, MR 1258423
Reference: [2] Doupovec, M., Kolář, I.: Natural affinors on time-dependent Weil bundles.Arch. Math. (Brno) 27 (1991), 205–209. MR 1189217
Reference: [3] Gancarzewicz, J., Kolář, I.: Natural affinors on the extended $r$-th order tangent bundles.Suppl. Rendiconti Circolo Mat. Palermo, 30 (1993), 95–100. MR 1246623
Reference: [4] Kolář I., Michor P. W., Slovák J.: Natural operations in differential geometry.Springer-Verlag, Berlin 1993. MR 1202431
Reference: [5] Kolář, I., Modugno, M.: Torsions of connections on some natural bundles.Diff. Geom. and Appl. 2(1992), 1–16. MR 1244453
Reference: [6] Kurek, J.: Natural affinors on higher order cotangent bundles.Arch. Math. (Brno) 28 (1992), 175–180. MR 1222284
Reference: [7] Mikulski, W. M.: Natural affinors on $r$-jet prolongation of the tangent bundle.Arch. Math. (Brno) 34(2)(1998), 321–328. Zbl 0915.58006, MR 1645340
Reference: [8] Mikulski, W. M.: The natural affinors on $\otimes ^k T^{(r)}$.Note di Matematica, to appear.
Reference: [9] Zajtz, A.: On the order of natural operators and liftings.Ann. Polon. Math. 49(1988), 169–178. MR 0983220
.

Files

Files Size Format View
ArchMathRetro_036-2000-4_3.pdf 355.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo