Previous |  Up |  Next

Article

Title: Three-dimensional curvature homogeneous hypersurfaces (English)
Author: Calvaruso, G.
Author: Marinosci, R. A.
Author: Perrone, D.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 36
Issue: 4
Year: 2000
Pages: 269-278
Summary lang: English
.
Category: math
.
Summary: This paper is motivated by the open problem whether a three-dimensional curvature homogeneous hypersurface of a real space form is locally homogeneous or not. We give some partial positive answers. (English)
Keyword: curvature homogeneous spaces
Keyword: isoparametric hypersurfaces
MSC: 53C20
MSC: 53C30
MSC: 53C40
idZBL: Zbl 1054.53070
idMR: MR1811171
.
Date available: 2008-06-06T22:26:14Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107741
.
Reference: [1] Boeckx E., Kowalski O., Vanhecke L.,: Riemannian manifolds of conullity two.World Scientific 1996. Zbl 0904.53006, MR 1462887
Reference: [2] Calvaruso G., Vanhecke L.: Special ball-homogeneous spaces.Z. Anal. Anwendungen (4) 16 (1997), 789-800. Zbl 0892.53023, MR 1615680
Reference: [3] Calvaruso G., Vanhecke L.: Ball-homogeneous spaces.Proceedings of the Workshop on Differential Geometry, Santiago 89 (1998), 35-51. Zbl 0912.53034
Reference: [4] Cartan E.: Sur des familles remarquables d’hypersurfaces isoparamétriques dans les espaces sphériques.Math. Z. 45 (1939), 335-367. Zbl 0021.15603, MR 0000169
Reference: [5] Cecil T. E., Ryan P. J.: Tight and taut immersions of manifolds.Research Notes in Math., Pitman 1985. Zbl 0596.53002, MR 0781126
Reference: [6] Chang S.: A closed hypersurface with constant scalar and mean curvature in $S^4$ is isoparametric.Comm. Anal. Geom. (1) 1 (1993), 71-100. MR 1230274
Reference: [7] Ferus D.: Notes on isoparametric hypersurfaces.Escola de Geometria Diferencial, Universidade Estadual de Campinas, 1980.
Reference: [8] Ferus D., Karcher H., Münzner H. F.: Clifford algebren und neue isoparametrische hyperflächen.Math. Z. (1981), 479-502.
Reference: [9] Kowalski O.: A classification of Riemannian $3$-manifolds with constant principal Ricci curvatures $\varrho _1 =\varrho _2 \ne \varrho _3$.Nagoya Math. J. 132 (1993), 1-36. MR 1253692
Reference: [10] Ozeki H., Takeuchi M.: On some types of isoparametric hypersurfaces in spheres, I.Tôhoku Math. J. 27 (1975), 515-559. Zbl 0359.53011, MR 0454888
Reference: [11] Ozeki H., Takeuchi M.: On some types of isoparametric hypersurfaces in spheres, I.Tôhoku Math. J. 28 (1976), 7-55. MR 0454889
Reference: [12] Sekigawa K.: On some $3$-dimensional Riemannian manifolds.Hokkaido Math. J. 26 (1974), 259-270. MR 0353204
Reference: [13] Singer I. M.: Infinitesimally homogeneous spaces.Comm. Pure Appl. Math. 13 (1960), 685-697. Zbl 0171.42503, MR 0131248
Reference: [14] Takagi H.: On curvature homogeneity of Riemannian manifolds.Tôhoku Math. J. 26 (1974), 581-585. Zbl 0302.53022, MR 0365417
Reference: [15] Tricerri F., Vanhecke L.: Cartan hypersurfaces and reflections.Nihonkai Math. J. (2) 1 (1990), 203-208. Zbl 0956.53505, MR 1090781
Reference: [16] Tsukada K.: Curvature homogeneous hypersurfaces immersed in a real space form.Tôhoku Math. J. 40 (1988), 221-244. Zbl 0651.53037, MR 0943821
Reference: [17] Yamada A.: Homogeneity of hypersurfaces in a sphere.Tsukuba J. Math. 22 (1) (1998), 131-143. Zbl 0981.53040, MR 1637672
Reference: [18] Yamato K.: A characterization of locally homogeneous Riemann manifolds of dimension $3$.Nagoya Math. J. 123 (1991), 77-90. Zbl 0738.53032, MR 1126183
.

Files

Files Size Format View
ArchMathRetro_036-2000-4_4.pdf 359.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo