Title:
|
Ito equation as a geodesic flow on $\widehat {\text{Diff}\sp {s}(S\sp 1) \bigodot C\sp {\infty }(S\sp 1)}$ (English) |
Author:
|
Guha, Partha |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
36 |
Issue:
|
4 |
Year:
|
2000 |
Pages:
|
305-312 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The Ito equation is shown to be a geodesic flow of $L^2$ metric on the semidirect product space ${\widehat{{\it Diff}^s(S^1) \bigodot C^{\infty }(S^1)}}$, where ${\it Diff}^s(S^1)$ is the group of orientation preserving Sobolev $H^s$ diffeomorphisms of the circle. We also study a geodesic flow of a $H^1$ metric. (English) |
Keyword:
|
Bott-Virasoro Group |
Keyword:
|
Ito equation |
MSC:
|
35Q53 |
MSC:
|
37K10 |
MSC:
|
37K65 |
MSC:
|
58D05 |
idZBL:
|
Zbl 1049.37045 |
idMR:
|
MR1811175 |
. |
Date available:
|
2008-06-06T22:26:25Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/107745 |
. |
Reference:
|
[1] Antonowicz M., Fordy A.: Coupled KdV equation with multi-Hamiltonian structures.Physica 28D (1987), 345–357. MR 0914454 |
Reference:
|
[2] Arbarello E., De Concini C., Kac V. G., Procesi C.: Moduli space of curves and representation theory.Comm. Math. Phys. 117 (1988), 1–36. MR 0946992 |
Reference:
|
[3] Arnold V. I.: Mathematical methods of classical mechanics.Second edition, Graduate Texts in Mathematics, Vol. 60, Springer-Verlag, 1989. MR 0997295 |
Reference:
|
[4] Camassa R., Holm D.: A completely integrable dispersiveshallow water equation with peaked solutions.Phys. Rev. Lett. 71 (1993), 1661–1664. MR 1234453 |
Reference:
|
[5] Cendra H., Holm D., Marsden J., Ratiu T.: Lagrangian reduction, the Euler-Poincar’e equations and semidirect products.to appear in the AMS Arnold Volume II, and all other references therein. |
Reference:
|
[6] Ebin D., Marsden J.: Groups of diffeomorphisms and themotion of an incompressible fluid.Ann. Math. 92 (1970), 102–163. MR 0271984 |
Reference:
|
[7] Guha P.: Diffeomorphism with some Sobolev metric, geodesic flow and integrable systems.IHES/M/98/69. |
Reference:
|
[8] Harnad J., Kupershmidt B. A.: Symplectic geometries on $T^{\ast }G$, Hamiltonian group actions and integrable systems.J. Geom. Phys. 16 (1995), 168-206. Zbl 0829.53027, MR 1330839 |
Reference:
|
[9] Ito M.: Symmetries and conservation laws of a coupled nonlinear wave equation.Phys. Lett. 91A (1982), 335–338. MR 0670869 |
Reference:
|
[10] Kirillov A. A.: Infinite dimensional Lie groups: their orbits, invariants and representations. The geometry of moments.Lect. Notes in Math. 970 (1982), Springer-Verlag, 101–123. Zbl 0498.22017, MR 0699803 |
Reference:
|
[11] Kirillov A. A.: Orbits of the group of diffeomorphisms of a circle and local superalgebras.Func. Anal. Appl. 15 (1980), 135–137. |
Reference:
|
[12] Kouranbaeva S.: The Camassa-Holm equation as a geodesic flow on the diffeomorphism group.Math-ph/9807021. Zbl 0958.37060 |
Reference:
|
[13] Marcel P., Ovsienko V., Roger C.: Extension of the Virasoro and Neveu-Schwartz algebras and generalized Sturm-Liouvilleoperators.Lett. Math. Phys. 40 (1997), 31–39. MR 1445965 |
Reference:
|
[14] Misiolek G.: A shallow water equation as a geodesic flow on the Bott-Virasoro group.J. Geom. Phys. 24 (1998), 203–208. Zbl 0901.58022, MR 1491553 |
Reference:
|
[15] Ovsienko V. Yu., Khesin B. A.: KdV super equation as an Euler equation.Funct. Anal. Appl. 21 (1987), 329–331. MR 0925082 |
Reference:
|
[16] Ovsienko V. Yu., Rogers C.: Extension of Virasoro group and Virasoro algebra by modules of tensor densities on $S^1$.Func. Anal. Appl. |
Reference:
|
[17] Shkoller S.: Geometry and the curvature of diffeomorphismgroups with $H^1$ metric and mean hydrodynamics.Math. AP/9807078. |
Reference:
|
[18] Segal G.: Unitary representations of some infinite dimensional groups.Comm. Math. Phys. 80 (1981), 301–342. Zbl 0495.22017, MR 0626704 |
. |