Title:
|
Coupled fixed points of mixed monotone operators on probabilistic Banach spaces (English) |
Author:
|
Beg, Ismat |
Author:
|
Latif, Abdul |
Author:
|
Ali, Rashid |
Author:
|
Azam, Akbar |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
37 |
Issue:
|
1 |
Year:
|
2001 |
Pages:
|
1-8 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The existence of minimal and maximal fixed points for monotone operators defined on probabilistic Banach spaces is proved. We obtained sufficient conditions for the existence of coupled fixed point for mixed monotone condensing multivalued operators. (English) |
Keyword:
|
probabilistic Banach space |
Keyword:
|
monotone operator |
Keyword:
|
fixed point |
MSC:
|
47H05 |
MSC:
|
47H10 |
MSC:
|
47S50 |
idZBL:
|
Zbl 1068.47093 |
idMR:
|
MR1822758 |
. |
Date available:
|
2008-06-06T22:28:00Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/107780 |
. |
Reference:
|
[1] Beg I., Rehman S., Shahzad N.: Fixed points of generalized contraction mappings on probabilistic metric spaces.Pakistan J. Statist. 8(2) (1992), 35–52. Zbl 0770.54040, MR 1225059 |
Reference:
|
[2] Bharucha-Reid A. T.: Fixed point theorems in probabilistic analysis.Bull. Amer. Math. Soc. 82 (1976), 641–657. Zbl 0339.60061, MR 0413273 |
Reference:
|
[3] Cain G. L., Jr., Kasriel R. H.: Fixed and periodic points of local contraction mappings on probabilistic metric spaces.Math. Systems Theory 9 (1970), 289–297. MR 0458397 |
Reference:
|
[4] Chang S. S.: Basic theory and applications of probabilistic metric spaces (I).App. Math. Mech. 9(2) (1988), 123–133. MR 0943878 |
Reference:
|
[5] Chang S. S., Cho Y. J., Kang S. M.: Probabilistic Metric Spaces and Nonlinear Operator Theory.Sichuan University Press, Chendgu, China, 1994. |
Reference:
|
[6] Chang S. S., Ma Y. H.: Coupled fixed points for mixed monotone condensing operators and existence theorem of the solutions for a class of functional equation arising in dynamic programming.J. Math. Anal. Appl. 160 (1991), 468–479. MR 1126131 |
Reference:
|
[7] Egbert R. J.: Products and quotients of probabilistic metric spaces.Pacific J. Math. 24 (1968), 437–455. Zbl 0175.46601, MR 0226690 |
Reference:
|
[8] Hadzic O.: Some theorems on the fixed points in probabilistic metric and random normed spaces.Boll. Un. Mat. Ital. B(6), 1-B (1982), 381–391. Zbl 0488.47028, MR 0654942 |
Reference:
|
[9] Hutson V., Pym J. S.: Applications of Functional Analysis and Operator Theory.Academic Press, London, 1980. Zbl 0426.46009, MR 0569354 |
Reference:
|
[10] Istratescu V. I.: Fixed Point Theory.D. Reidel Publishing Company, Dordrecht, 1988. MR 0620639 |
Reference:
|
[11] Menger K.: Statistical metric.Proc. Natl. Acad. Sci. USA, 28 (1942), 535–537. MR 0007576 |
Reference:
|
[12] Schweizer B., Sklar A.: Statistical metric spaces.Pacific J. Math. 10 (1960), 313–334. Zbl 0096.33203, MR 0115153 |
Reference:
|
[13] Schweizer B., Sklar A.: Probabilistic Metric Spaces.North-Holland Series in Probability and Applied Mathematics 5 1983. Zbl 0546.60010, MR 0790314 |
Reference:
|
[14] Sherwood H.: Complete probabilistic metric spaces.Z. Wahrsch. Verw. Gebiete 20 (1971), 117–128. Zbl 0212.19304, MR 0317290 |
Reference:
|
[15] Stojakovic M.: Fixed point theorems in probabilistic metric spaces.Kobe J. Math. 2(1) (1985), 1–9. Zbl 0589.54059, MR 0811797 |
Reference:
|
[16] Stojakovic M.: Common fixed point theorems in complete metric and probabilistic metric spaces.Bull. Austral. Math. Soc. 36 (1987), 73–88. Zbl 0601.54056, MR 0897423 |
Reference:
|
[17] Sun Y.: A fixed point theorem for monotone operators with applications.J. Math. Anal. Appl. 156 (1991), 240–252. MR 1102609 |
Reference:
|
[18] Serstnev A. N.: On the notion of random normed spaces.Dokl. Akad. Nauk 149 (1963), 280–283. MR 0154320 |
Reference:
|
[19] Tan N. X.: Generalized probabilistic metric spaces and fixed point theorems.Math. Nachr. 129 (1986), 205–218. Zbl 0603.54049, MR 0864635 |
. |