Previous |  Up |  Next

Article

Title: The valuated ring of the arithmetical functions as a power series ring (English)
Author: Schwab, Emil D.
Author: Silberberg, Gheorghe
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 37
Issue: 1
Year: 2001
Pages: 77-80
Summary lang: English
.
Category: math
.
Summary: The paper examines the ring $A$ of arithmetical functions, identifying it to the domain of formal power series over ${\bf C}$ in a countable set of indeterminates. It is proven that $A$ is a complete ultrametric space and all its continuous endomorphisms are described. It is also proven that $A$ is a quasi-noetherian ring. (English)
Keyword: arithmetical function
Keyword: valuated ring
Keyword: formal power series
MSC: 13F25
MSC: 13F30
idZBL: Zbl 1090.13016
idMR: MR1822767
.
Date available: 2008-06-06T22:28:26Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107789
.
Reference: [1] Bosch S., Güntzer U., Remmert R.: Non-Archimedian Analysis.Springer Verlag, 1984. MR 0746961
Reference: [2] Cashwell E.D., Everett C.J.: The Ring of Number-Theoretic Functions.Pacific J. Math. 9 (1959), 975–985. Zbl 0092.04602, MR 0108510
Reference: [3] Schwab E.D., Silberberg G.: A Note on Some Discrete Valuation Rings of Arithmetical Functions.Arch. Math. (Brno), 36 (2000), 103–109. Zbl 1058.11007, MR 1761615
Reference: [4] Sivaramakrishnan R.: Classical Theory of Arithmetic Functions.Monographs and Textbooks in Pure and Applied Mathematics 126, Marcel Dekker, 1989. Zbl 0657.10001, MR 0980259
Reference: [5] Zariski O., Samuel P.: Commutative Algebra.vol. II, Springer Verlag, 1960. Zbl 0121.27801, MR 0120249
.

Files

Files Size Format View
ArchMathRetro_037-2001-1_10.pdf 279.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo