Title:
|
Natural vector fields and 2-vector fields on the tangent bundle of a pseudo-Riemannian manifold (English) |
Author:
|
Janyška, Josef |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
37 |
Issue:
|
2 |
Year:
|
2001 |
Pages:
|
143-160 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $M$ be a differentiable manifold with a pseudo-Riemannian metric $g$ and a linear symmetric connection $K$. We classify all natural (in the sense of [KMS]) 0-order vector fields and 2-vector fields on $TM$ generated by $g$ and $K$. We get that all natural vector fields are of the form \[ E(u)=\alpha (h(u))\, u^H + \beta (h(u))\, u^V\,, \] where $u^V$ is the vertical lift of $u\in T_xM$, $u^H$ is the horizontal lift of $u$ with respect to $K$, $h(u)= 1/2 g(u,u)$ and $\alpha ,\beta $ are smooth real functions defined on $R$. All natural 2-vector fields are of the form \[ \Lambda (u) = \gamma _1(h(u))\, \Lambda (g,K) + \gamma _2(h(u))\,u^H\wedge u^V\,, \] where $\gamma _1$, $\gamma _2$ are smooth real functions defined on $R$ and $\Lambda (g,K)$ is the canonical 2-vector field induced by $g$ and $K$. Conditions for $(E,\Lambda )$ to define a Jacobi or a Poisson structure on $TM$ are disscused. (English) |
Keyword:
|
Poisson structure |
Keyword:
|
pseudo–Riemannian manifold |
Keyword:
|
natural operator |
MSC:
|
53C50 |
MSC:
|
53D17 |
MSC:
|
58A20 |
MSC:
|
58A32 |
idZBL:
|
Zbl 1090.58007 |
idMR:
|
MR1838411 |
. |
Date available:
|
2008-06-06T22:28:41Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/107794 |
. |
Reference:
|
[1] Janyška J.: Remarks on symplectic and contact 2–forms in relativistic theories.Bollettino U.M.I. (7) 9–B (1995), 587–616. Zbl 0857.53027, MR 1351076 |
Reference:
|
[2] Janyška J.: Natural symplectic structures on the tangent bundle of a space-time.Proceedings of the Winter School Geometry and Topology (Srní, 1995), Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II 43 (1996), pp. 153–162. MR 1463517 |
Reference:
|
[3] Janyška J.: Natural Poisson and Jacobi structures on the tangent bundle of a pseudo-Riemannian manifold.preprint 2000. Zbl 1013.53053, MR 1871030 |
Reference:
|
[4] Kolář I., Michor P. W., Slovák J.: Natural Operations in Differential Geometry.Springer–Verlag 1993. MR 1202431 |
Reference:
|
[5] Kowalski O., Sekizawa M.: Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles - a classification.Bull. Tokyo Gakugei Univ., Sect.IV 40 (1988), pp. 1–29. Zbl 0656.53021, MR 0974641 |
Reference:
|
[6] Krupka D., Janyška J.: Lectures on Differential Invariants.Folia Fac. Sci. Nat. Univ. Purkynianae Brunensis, Brno 1990. MR 1108622 |
Reference:
|
[7] Libermann P., Marle, Ch. M.: Symplectic Geometry and Analytical Mechanics.Reidel Publ., Dordrecht 1987. Zbl 0643.53002, MR 0882548 |
Reference:
|
[8] Lichnerowicz A.: Les variétés de Jacobi et leurs algèbres de Lie associées.J. Math. Pures et Appl., 57 (1978), pp. 453–488. Zbl 0407.53025, MR 0524629 |
Reference:
|
[9] Nijenhuis A.: Natural bundles and their general properties.Diff. Geom., in honour of K. Yano, Kinokuniya, Tokyo 1972, pp. 317–334. Zbl 0246.53018, MR 0380862 |
Reference:
|
[10] Sekizawa M.: Natural transformations of vector fields on manifolds to vector fields on tangent bundles.Tsukuba J. Math. 12 (1988), pp. 115–128. Zbl 0657.53009, MR 0949905 |
Reference:
|
[11] Terng C. L.: Natural vector bundles and natural differential operators.Am. J. Math. 100 (1978), pp. 775–828. Zbl 0422.58001, MR 0509074 |
Reference:
|
[12] Vaisman I.: Lectures on the Geometry of Poisson Manifolds.Birkhäuser, Verlag 1994. Zbl 0810.53019, MR 1269545 |
. |