Previous |  Up |  Next

Article

Title: On convergence of quadrature-differences method for linear singular integro-differential equations on the interval (English)
Author: Fedotov, A. I.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 37
Issue: 4
Year: 2001
Pages: 257-271
Summary lang: English
.
Category: math
.
Summary: Here we propose and justify the quadrature-differences method for the full linear singular integro-differential equations with Cauchy kernel on the interval $(-1,1)$. We consider equations of zero, positive and negative indices. It is shown, that the method converges to exact solution and the error estimate depends on the sharpness of derivative approximation and the smoothness of the coefficients and the right-hand side of the equation. (English)
Keyword: singular integro-differential equations
Keyword: quadrature-differences method
MSC: 45E05
MSC: 45L05
MSC: 65R20
idZBL: Zbl 1090.45003
idMR: MR1879448
.
Date available: 2008-06-06T22:29:03Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107803
.
Reference: [1] Afendikova N. G., Lifanov I. K., Matveev A. F.: Approximate solution of singular integral equations.Differ. Uravn. 23 (1987), N8, 1392–1402 (in Russian). Zbl 0645.65092, MR 0909586
Reference: [2] Belotserkovski S. M., Lifanov I. K.: Numerical methods for singular integral equations.Moscow 1985 (in Russian).
Reference: [3] Elliott D.: The approximate solution of singular integral equations.Solution Methods for Integral Equations, Theory and Applications, Math. Concepts Meth. Sci. Eng., New York-London 18 1979, 83–107. Zbl 0446.65062, MR 0564265
Reference: [4] Fedotov A. I.: On convergence of quadrature-differences method for linear singular integrodifferential equations.Zh. Vychisl. Mat. Mat. Fiz. 29 (1989), N9, 1301–1307 (in Russian). MR 1018581
Reference: [5] Fedotov A. I.: On convergence of quadrature-differences method for one class of singular integro-differential equations.Izv. Vyssh. Uchebn. Zaved. Mat. (1989), N8, 64–68 (in Russian). MR 1039732
Reference: [6] Fedotov A. I.: On convergence of quadrature-differences method for nonlinear singular integrodifferential equations.Zh. Vychisl. Mat. Mat. Fiz. 31 (1991), N5, 781–787 (in Russian). MR 1120019
Reference: [7] Fedotov A. I.: On convergence of quadrature-differences method for linear singular integrodifferential equations with discontinuous coefficients.Zh. Vychisl. Mat. Mat. Fiz. 31 (1991), N2, 261–271 (in Russian). MR 1099589
Reference: [8] Gakhov F. D.: Boundary Value Problems.Pergamon Press, Oxford, England 1966. Zbl 0141.08001, MR 0198152
Reference: [9] Hvedelidze B. V.: Linear discontinuous boundary problems of the theory of functions and some their applications.Proceedings of Tbilisi Mathematical Institute of Georgian Academy of Sciences 23 (1956), 3–158 (in Russian). MR 0107148
Reference: [10] Ivanov V. V.: The theory of approximate methods and their application to the numerical solution of singular integral equations.Noordhoff, Holland 1976. Zbl 0346.65065, MR 0405045
Reference: [11] Kantorovič L. V., Akilov G. P.: Functional analysis in normed spaces.Macmillan, New York 1964. MR 0213845
Reference: [12] Karpenko L. N.: Approximate solution of a singular integral equations by means of Jacobi polynomials.J. Appl. Math. Mech. 30 (1966), 668–675. MR 0231156
Reference: [13] Lifanov I. K.: The method of singular integral equations and a numerical experiment in mathematical physics, aerodynamics and the theory of elasticity and wave diffraction.Moscow 1995 (in Russian). Zbl 0904.73001, MR 1461016
Reference: [14] Matveev A. F.,: On the construction of approximate solutions of singular integral equations of the second kind.Doklady Akad. Nauk 307 (1989), N5, 1046–1050 (in Russian). MR 1020685
Reference: [15] Muskhelishvili N. I.: Singular integral equations.Noordhoff, Groningen, Holland 1953. Zbl 0051.33203, MR 0355494
Reference: [16] Natanson I. G.: Construction theory of functions.Moscow 1959 (in Russian).
Reference: [17] Szegö G.: Orthogonal Polynomials.AMS Colloquim Publications, 23, 1967. MR 0310533
Reference: [18] Vainikko G. M.: The compact approximation of the operators and the approximate solution of the equations.Tartu University Press, Tartu 1970 (in Russian). MR 0273475
.

Files

Files Size Format View
ArchMathRetro_037-2001-4_2.pdf 382.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo